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Low-Resolution Summaries for Spatial Point Data With Shifted Grid Cells
Category: Research

Figure 1: A point cloud showing ca. 2 000 locations in Europe and groupings into equal-sized cells for summarization with our
technique (A, left) and a grid (A, right). Better use of negative space reveals spatial features and makes it possible to distinguish,
e.g., Great Britain from Norway. B) Comparison of (A) with 7 summaries showing median value per cell.

ABSTRACT

Choropleth maps are useful to investigate global patterns of a single
variable, and also multiple variables or variables over time, when
used in small multiples. Grids can be seen as a choropleth-like
technique for point data, with the advantage that they do not assume
what advanced computations may or may not be carried out with the
data at hand and how. They have the main drawback of not looking
much like the point cloud, especially in low resolutions, the smaller
size of which being beneficial for small multiples. We propose an
adaptive approach to construct a grid-like structure from point data.
Our experiments suggest that it resembles the point cloud better and
is more efficient with regard to the number of cells used.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques;

1 THE PROBLEM

Choropleth maps are useful for analysis tasks such as investigat-
ing global patterns of a single variable [6]. When shown side by
side, comparison of global patterns is enabled (e.g., Fig. 1B). Small
multiples of choropleth maps then allow comparison of many spa-
tial variables, possibly over time if the dataset is spatio-temporal.
Choropleth maps are usually created from existing polygons depict-
ing the areas in question, but the analysis tasks are applicable to
point data, too. In this paper we consider if and how we can build
a choropleth map from point data, without use of metadata, like
zip codes or assumptions about point volume, distribution or data
domain. Such design restrictions might at first seem unnecessary,
needlessly complicating the issue, or even unorthodox as visualiza-
tions are usually designed for a particular combination of data, users
and tasks [13, 14]. But it is beneficial, e.g., when designing a vi-
sual analytics (VA) solution around a domain-independent numeric
method. A widely used example for that is, e.g., Principal Com-
ponent Analysis. As domain-independent implies, such methods

allow data analysis on any suitable dataset, be it from geosciences
or psychology. In such a case, visualization designers need to find
the lowest common denominator that suits as many domains and
datasets as possible. If designers do not, their designs will be less
useful for datasets where the assumptions do not hold.

We describe our requirements using the design triangle by Miksch
and Aigner [13]. Users are data analysts in any domain. They work
with multivariate spatial point data, where all variables are numeric
and we expect 2–100 variables. Their task for the purpose of this
paper is to get a coarse overview of a single variable in space, i.e.,
analysts are interested in where values exist, areas of low and high
value, whether values change smoothly in one direction, etc. Further-
more, they want to compare these global patterns between variables.
Hence we are looking for a way (adhering to the restrictions above)
to show many individual variables in low resolution, so that they can
be compared, such that patterns of single variables are still visible.

Our contributions in this paper are specifically:

• We propose an alternative choropleth-like technique for spatial
point data, similar to grids, that is suited for low-resolution
renderings. We explain our focus on grids in Sect. 3.

• We provide a simple greedy algorithm to obtain such a visual-
ization in Sect. 4.

• We evaluate our technique by computing two metrics and
comparing them to grids (Sect. 5). These experiments suggest
that cell arrangements from our technique resemble the point
cloud better and use less cells.

2 RELATED WORK

Spatial point data is relatively common in the visualization literature.
Hogräfer et al. [9] recently surveyed and classified map-like visu-
alizations, which categorizes grids as an imitation technique using
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geometric hulls. He et al. [8] specifically survey point data, but focus
on multivariate analysis, which is not our goal in this paper.

Goodwin et al. [6] propose a framework to visualize variables
across scales and geography. In that, our analysis goal is the Global-
Uni case as we are interested in global patterns of a single variable.
The authors suggest a choropleth map to support this analysis. How
to compute such a map using points instead of areas and without
metadata such as political boundaries is the topic of our paper.

Zhou et al. [21] propose the point grid map. Based on a grid
map [12], which is commonly used for area data, they use it for point
data. Marks are aligned on a grid such that they retain directional
relations. Since we do not know in advance the number of points or
how they are distributed, there is a chance this visualization would
produce too small marks. This is also the case when using pixel-
oriented techniques [10], which show each datapoint as a single
pixel. If executed well, these can support our analysis tasks, but
they require at least as many pixels as data points, which might be
too many, and show spatial patterns in an unintuitive way due to the
prevailing use of space-filling curves.

Attribute signatures by Turkay et al. [18] is close to what we want,
as it shows values of variables along a user-drawn curve as small
multiple line charts. This approach is flexible and works for any
point data, but requires both a larger supporting map and the analyst
to choose a curve. For our purposes, this offsets its benefits.

Several techniques exist that deal with density of categorical
point data. Micro diagrams [7] show the distribution of categories
as pie charts via small multiples in geographical space. Similarly,
TopoGroups [19] show the distribution of categories on the outline
of point clusters. Phoenixmap [20] encloses each category with a
concave hull and encodes the point density with line thickness on
the hull. BinSq [2] aligns points on a quadtree and ensures that
the perceived density of categories is accurate by removing points
as necessary. As all approaches focus on categorical data and not
numerical, and density instead of value, they cannot be used in our
case.

3 DESIGN CHOICES

As outlined in Sect. 1 we look for a visualization that assumes the
least about what can be done with the data at hand and supports
global pattern analysis even in low-res renderings, so that it can be
used in small multiples, which enables comparison over variables or
time. We discuss alternative approaches to our technique, that we
did not pursue, in the following. These include showing raw data as
points or lines, data aggregation without grids, and data mining.

The most straightforward approach is to show raw data. Dot
maps, where each point is encoded by one mark and its value by
color or size, are a common choice for point data. In our case they
cannot be used as-is, because many or large points in small space
lead to occlusion (Fig. 2A1).

Another option are isolines, where one curve joins points of equal
value, and multiple curves are combined, thereby representing mul-
tiple values. When the curve’s area is filled with color, we obtain
a heat map. Such isolines are often computed with the Marching
Squares algorithm, which requires a regular grid. Hence as a pre-
processing step the variable is assumed to be a scalar field and
interpolated onto such a grid. In our very general setting, we do
not know if interpolation is admissible or useful, and if so, which
interpolating function should be used.

The most simple approach for aggregation is to overlay a regular
grid of fixed size. Then, desired summary statistics such as count,
mean, median, or variance can be computed per cell. The advantage
of grids with summary statistics is they do not assume a scalar field.
But two disadvantages of grids make them less attractive: First,
spatial features tend to be barely visible in low resolutions, as cells
are perfectly aligned and no negative space is allowed between them
(see Fig. 1A, right). Second, for summary statistics we ideally want

Figure 2: A) Issues with design alternatives in small sizes: Dot map
(1) suffers from overdrawing, Voronoi diagram (2) and quadtree (3)
are too detailed. Our approach (4) is shown for comparison. B)
An α-shape of the point cloud where all of continental Europe and
Great Britain are joined in one hull.

Figure 3: The idea for our technique. Neither columns nor rows are
required to be contiguous. Both steps are carried out by the same
function place intervals (algorithm 1).

many points. But because grid cell locations are mostly independent
from point locations, more cells than necessary are used, lowering
the average number of points per cell.

There are many techniques that similarly subdivide the plane into
cells, examples would be quadtrees (Fig. 2A3), kd-trees, Voronoi
diagrams (Fig. 2A2) or Delaunay triangulations [3]. However, they
do not improve upon the mentioned issues: They do not group
multiple points (Voronoi, Delaunay), or generate cells of varying
size that may be too small in low resolutions (quadtree, kd-tree). As
none of the approaches allow negative space, it would be implicitly
visible as larger cells and not show spatial features well.

Other means to group multiple points exist, like algorithms to
compute various geometric hulls [3, 4, 16]. But even if some may in
principle return multiple hulls, we might for a given unlucky dataset
end up with one big hull enclosing all points (cf. Fig. 2B). Then the
summary statistics equal the global statistics. A similar argument
can be made about using density-based clustering algorithms such
as DBSCAN [5]. Grouping not in spatial space but data space, e.g.,
with k-means [11], is a possibility, but more useful when the goal is
only multivariate analysis.

In conclusion, regular grids seem to be our best option, but still
have drawbacks. How we intend to overcome these is described in
the next section.

4 OUR APPROACH

In Sect. 3 we identified grids as our best option, but with two draw-
backs:

D1 Spatial features of the point cloud are not retained well. These
can be, e.g., holes, islands, or concave sections along the
outline.

D2 Grids are less efficient than necessary, i.e., use too many cells.

The idea is now to overcome these by relaxing the definition of a
grid. If we allow negative space between cells, we would expect this
leads to better resembled spatial features, as they are often defined
by it. For example, holes are literally negative space, islands have
lots of it around them and concave sections can be thought of holes
on the boundary of a polygon.
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There is a simple way to compute such a cell arrangement, out-
lined in Fig. 3. As input we take the point cloud P and the desired
cell dimensions w,h. First, the X coordinates in P are segmented
into columns of width w, with gaps if possible. Using the same logic,
the Y coordinates of points in each column are then again segmented
into rows of height h. The left column edges, top row edges and cell
dimensions together define the cell arrangement. We use a heuristic
to determine the processing order of dimensions: The longer side of
P’s bounding box is processed first to hopefully avoid cases where,
e.g., a tall point cloud is just too wide for a single column.

4.1 The Algorithm
Because we use the dimensions independently for our computation,
the problem boils down to placing intervals of length k over points
on a line. Intervals are left-closed and right-open. We use a greedy
algorithm where we scan the line from left to right and insert a k-
interval as late as possible, move to the end of the just placed interval
and repeat. The intervals contain all points as required, but are not
centered over their points, which distorts spatial features. Hence we
proceed with a postprocessing loop in which we try to center the
intervals, or groups thereof, over their points until no improvement
can be made. This function is called place intervals and its
pseudocode is shown in algorithm 1. Our implementation is available
as supplementary material.

Data: List of points P, interval length k
Result: List of interval left endpoints L

1 Sort P, set L to empty list
2 while ∃p ∈ P that is unprocessed do
3 Let p be smallest value in P
4 Place interval l with left endpoint at p
5 Calculate trailing space, i.e., the difference between

largest q ∈ P in l and l’s right endpoint
6 Move l to the left, at most 1/2 of trailing space
7 Snap to previous interval’s right endpoint if gap is too

small
8 Add l to L, mark all points in l as processed
9 end

10 repeat
11 Find groups G of contiguous intervals in L
12 for g ∈ G do
13 Let lg be the union of all intervals in g
14 if there is a gap to the interval left of lg and there is

more trailing than leading space in lg then
15 Move lg to the left
16 end
17 end
18 until no lg was moved
19 return L

Algorithm 1: Pseudocode for place intervals

5 EXPERIMENTS

In the following, we investigate if our proposed technique improves
the drawbacks mentioned in Sect. 4. Does its cell arrangement reflect
spatial features better (cf. D1 in Sect. 4) and does it use less cells
(cf. D2) than a grid? To answer these questions, we compared two
quality metrics for grids and our technique using realistic and diverse
point clouds. We provide the source code used for our experiments
as supplementary material.

Regarding to D1 we expect that, if our technique shows spatial
features better, then its outline would be more similar to the point
cloud’s outline than the outline of the grid arrangement. We use a
popular similarity metric for polygons, the Fréchet distance [1], to
compare outlines. The cell arrangement outline is obtained by taking

(a) Thailand (b) Poland (c) Mauritania (d) Panama

Figure 4: The four countries used in our experiments.

the union of all adjacent cells. The point cloud outline is obtained
by a concave hull algorithm based on ideas by Park and Oh [16],
implemented in https://github.com/mapbox/concaveman.

Regarding to D2 we count the cells to determine if our technique
is more efficient.

We wanted realistic point cloud shapes to increase confidence
in our results. So we picked four countries which we think have
complex and diverse outlines (Fig. 4): Mauritania has some near-
45-degree angles, Panama has large and small concave sections,
Thailand has two larger landmasses connected by an isthmus and
Poland is quite round. Country outlines were obtained from R’s
rnaturalearth package and projected to the plane in Equal Earth
projection [17]. To obtain point clouds, we uniformly sample points
into their outlines such that all point clouds have the same density.

We use square cells with decreasing size defined by the point
cloud’s diameter D (maximum distance between two points). The
side length k = D/i ranges from 1/2 to 1/10th of the diameter. We
stop at 1/10th as our focus is on low resolutions and because with
smaller cells we would at some point obtain multiple outlines that
require more effort to compare as they need matching.

There is one additional problem to take care of: A grid for a point
cloud is not uniquely defined by cell dimensions, it also matters
where the origin point is. We figured that the bottom left of P’s
bounding box is a natural place to put it, because it is simple and
quick. To reduce the impact of our choice on the results we aggregate
over five random offsets between 0 and k/2 subtracted from it.

5.1 Results

Fig. 5 shows the results of our experiments. The Y axis encodes the
relative value of the metric, the X axis is the cell size with decreas-
ing cells from left to right, rows are the metrics and columns the
countries. If a line is below the horizontal black line, our technique
performed better.

The large improvement in Fréchet distance with big cells stems
from unfavorable origins for grids which lead to additional poorly
aligned cells (Fig. 6, top row). After that, from maybe k = D/5,
follows a phase in which the grids get closer to our technique, but
are still worse (Fig. 6, second row).

At this point we would like to point out something the Fréchet
distance does not show. It computes the smallest sufficient “leash” so
a human and their dog can walk on either curve. As soon as there is
anywhere a large distance between cell and point cloud outline, our
technique and grids will have similar Fréchet distance, independent
of how well the rest of the outline fits. Examples are shown in the
two bottom rows of Fig. 6, where our technique misplaced only one
(bottom row) or a two (third row) cells but arguably tracks the rest
of the point outline better than the grid.

Furthermore, the two metrics should not be analyzed in isolation.
We ran experiments only up to k=D/10 cell size in order to compare
single outlines. This does not mean that grids perform the same as
our technique from this value on, as the top row of Fig. 5 might
suggest. Because the number of cells seems to be consistently lower
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Figure 5: Evaluation results for our technique. If lines are below the
black line, our technique performs better than a grid.

(Fig. 5, bottom row), our visualization will show more negative
space, which is important information.

6 DISCUSSION AND CONCLUSION

We presented a visualization technique for spatial point data that
is related to grids. It works by greedily placing fixed-length inter-
vals in each dimension separately, thus skipping over empty space.
Although we presented our technique with geospatial points through-
out this paper, it is applicable to any point cloud in the plane. Our
experiments with low resolutions suggest it produces better cell
arrangements in terms of similarity to the point cloud outline and
number of cells, alleviating two drawbacks we identified with our
preferred option in Sect. 3. Other advantages are that analysts do not
need to pick an origin point and can defer the choice of dimension
order to a heuristic, leaving only the cell size as a parameter. Since
grouping points inherently suffers from the modifiable areal unit
problem [15], we do not expect to introduce any new biases with our
approach. If anything our technique makes nonsensical groupings,
e.g., points on opposite coasts of a sea, less likely.

In future work we would like to conduct a user study to validate if
people find cell arrangements by our technique more representative
of the point cloud, as the Fréchet distance is smaller than with grids
but can still be relatively large. It would also be interesting if our
technique can help with specific tasks, such as lookups of known
locations (“which cell contains London?”). We would like to test if
we can remove the dependency on the point set’s orientation, e.g.,
by running our algorithm along principal components. Finally, for
effective use in practice it would be helpful to support or automate
the selection of cell dimensions.
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