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Kurzfassung

Immer mehr Daten werden über die Welt gesammelt und wir versuchen, sie sinnvoll zu
nutzen. Daten sind oft zeitlich oder räumlich verteilt, d. h. die einzelnen Messungen
werden an bestimmten Zeitpunkten oder Orten durchgefüht. Zusätzlich bestehen sie
oft aus mehreren Variablen. So wird z. B. die elektrische Aktivität des Herzens durch
Elektrokardiogramme untersucht, und die chemische Analyse von Bodenproben kann das
Ausmaß der Umweltverschmutzung aufdecken. Bei der ordnungsgemäßen Analyse solcher
Daten muss ihr zeitlicher oder räumlicher Charakter berücksichtigt werden, da diese
Strukturen von besonderem Interesse sind. Die Analyse mehrerer Variablen beinhaltet die
Suche nach niedrigdimensionalen Unterräumen, die wichtige Trends im Datensatz erfassen.
Dies wird als Dimensionality Reduction (DR) bezeichnet. Blind Source Separation (BSS)
ist ein statistisches Modellierungsframework für DR von zeitlichen oder räumlichen Daten.
Die gewonnenen latenten Dimensionen müssen visuell untersucht werden, um etwas über
die gemessenen Phänomene zu erfahren, oder sie werden für die Modellierung verwendet.
Die größten Herausforderungen für den praktischen Einsatz von BSS sind jedoch der
große zu berücksichtigende Parameterraum und die Anzahl der zu analysierenden latenten
Dimensionen.

Die Datenvisualisierung ist ein integraler Bestandteil der Datenanalyse, bei der Daten in
einer aussagekräftigen grafischen Form dargestellt werden, um die Mustererkennungsfähig-
keiten des menschlichen visuellen Systems zu nutzen. Wenn interaktive Visualisierungen
mit leistungsstarken Algorithmen zur Datenverwaltung, -analyse und -verarbeitung ver-
bunden werden, spricht man von Visual Analytics (VA). Diese Arbeit schlägt VA Ansätze
für BSS vor. Auf etablierten Forschungsmethoden der Visualisierung aufbauend wurden
Designstudien im Kontext von BSS für zeitliche und räumliche Daten durchgeführt.
Wir betten unsere Arbeit in die breitere Visualisierungsliteratur zur visuellen Parame-
teranalyse ein. Die Beiträge dieser Arbeit sind i) VA-gestützte Parameteranalyse für
Temporal Blind Source Separation (TBSS), einschließlich einer Aufgabenbeschreibung für
BSS, ii) VA-gestützte Parameteroptimierung für Spatial Blind Source Separation (SBSS),
und iii) VA-gestützte Sensitivitätsanalyse für SBSS. Diese Arbeit stellt folglich einen
ersten Schritt zu BSS-gestützter visueller Datenanalyse dar. Die Lösung der besonderen
Probleme von BSS zeigte außerdem mögliche zukünftige Forschung in den Bereichen
visueller Parameteranalyse, Visualisierung kategorischer Daten, und geovisueller Analyse
auf.
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Abstract

Ever more data is collected about everything, and we look for ways to make sense of them.
Collected data are often temporally or spatially distributed, i.e., associated with points
in time or locations in space, and consist of multiple variables. E.g., the heart’s electrical
activity is investigated in healthcare through electrocardiograms, and chemical analysis of
soil samples may uncover the extent of environmental pollution. Proper analysis of such
data has to account for their temporal or spatial nature, as these particular structures,
e.g., distributions in time or space, are often of special interest. Analyzing multiple
variables involves searching for low-dimensional subspaces that still capture major trends
in the dataset, which is referred to as Dimensionality Reduction (DR). Blind Source
Separation (BSS) is a statistical modeling framework for DR of temporal/spatial data
and hence a superior analysis tool compared to temporally/spatially-unaware methods.
Obtained latent dimensions are visually inspected to learn about the data-generating
phenomena or used for modeling. However, the main challenges inhibiting the use of BSS
in practice are a large parameter space to consider and the number of latent dimensions
to analyze.

Data visualization is an integral part of data analysis, where data is presented in a
meaningful graphical way to harness the pattern recognition abilities of the human visual
system. When interactive visualizations are paired with powerful data management,
analysis, and processing algorithms, we speak of Visual Analytics (VA). This thesis
proposes VA approaches to make BSS usable in practice. Building on established research
methods in visualization, we conducted design studies in the context of BSS for temporal
and spatial data. We embed our work in the broader visualization literature concerning
visual parameter analysis. The advances of this thesis are i) VA-supported parameter
analysis for Temporal Blind Source Separation (TBSS), including a task abstraction
for BSS, ii) VA-supported parameter optimization for Spatial Blind Source Separation
(SBSS), and iii) VA-supported sensitivity analysis for SBSS. Consequently, this thesis
presents a first step toward BSS-supported visual data analysis. Solving the particular
problems of BSS also uncovered avenues for future research in visual parameter analysis,
set visualization, and geovisual analytics.
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CHAPTER 1
Introduction

Many industries and scientific fields collect and analyze multiple variables distributed
over time and space. E.g., the electrical activity of the heart is investigated in healthcare
through electrocardiograms, fluctuating stock values are of interest to financial analysts,
chemical analysis of soil samples may uncover the extent of environmental pollution,
and trends of meteorological measurements, such as precipitation and temperature,
are relevant to everyone’s daily lives and climate research. Specifically, we consider
multivariate data associated with time points on a calendar (multivariate time series)
or associated with locations in space (multivariate spatial fields). Analysis of such
datasets is challenging due to their temporal and spatial characteristics and the multiple
variables involved. Because variables are often correlated and measurements are tend
to be noisy, multivariate datasets are subjected to Dimensionality Reduction (DR),
sometimes called multidimensional projections or low-dimensional embeddings. The idea
behind these approaches is that the high-dimensional signal may often be represented
well enough by a (transformed) subset of the original dimensions, referred to as latent
dimensions. DR approaches thus obtain a lower-dimensional version of the original
dataset that still captures high-dimensional structures. Principal Component Analysis
(PCA), Multi-Dimensional Scaling (MDS) [Sae+18], or stochastic neighbor embeddings
such as t-Distributed Stochastic Neighbor Embedding (t-SNE) [vdMH08] and Uniform
Manifold Approximation and Projection (UMAP) [MHM18] are just a few of these widely
applied techniques. The resulting latent dimensions may be used for visualization directly
or as input to other algorithms [Sed+12]. Whether these DR techniques are linear or
nonlinear, stochastic or deterministic, their main drawback for analyzing temporal and
spatial data is that they do not incorporate temporal or spatial information.

Blind Source Separation (BSS), on the other hand, is a general multivariate statistical
modeling framework [CJ10; YHX14]. Many BSS models were explicitly designed for and
are thus suitable for multivariate time series or spatial fields. BSS brings various advan-
tages compared to the aforementioned alternative methods, e.g., the framework is linear
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1. Introduction

and keeps the well-known loading-scores scheme from PCA, which aids interpretation of
latent dimensions. BSS also properly accounts for temporal or spatial dependence due to
its model-based approach. Ignoring such dependence in DR might be inefficient or miss
important structures. Therefore, latent dimensions identified with BSS often correspond
to the physical reality of the collected data, which makes it, in theory, a superior analysis
tool.

In practice, however, several challenges hinder the effective use of BSS methods, mainly
arising from complex tuning parameters to be set. Temporal Blind Source Separation
(TBSS), specifically the Generalized Second-Order Blind Identification (gSOBI) method
[Mie+20], requires analysts to choose two sets of temporal intervals (lag sets) and a
weighting factor between the two. A lag set thus represents a temporal parameter with 2T

possible settings (for a time series of length T ). Similarly, Spatial Blind Source Separation
(SBSS) parameters have a meaningful spatial extent. The required tuning parameters
consist of a kernel, i.e., a distance defining a location’s neighborhood, and a regionalization,
i.e., a partition of locations into coherent groups [MBN22]. Again it is easy to see that even
small datasets induce many possible tuning parameter settings. Usually, in the case of
multivariate parameters, this issue is tackled by taking random samples of the parameter
space, precomputing the respective outputs, and visually presenting the results or using
the data for computational assessments, such as sensitivity analysis [Sed+14]. However,
this approach is seen as less productive with BSS. Partly because automatic sampling
methods are not straightforward to find for such complex interdependent parameters and,
more importantly, because domain knowledge is considered crucial. For instance, a SBSS
kernel should be selected to cover the distance within which a latent data-generating
process (e.g., precipitation) may be noticeable. Clearly, this is a problem for the human
analyst instead of the computer because not only does one need to know which processes
could be in the data in principle, but also whether the spatial resolution of the dataset
would show it. Despite these challenges, analysts need to perform common parameter
space analysis tasks [Sed+14], such as optimization or sensitivity analysis, to successfully
employ BSS.

When the analyst overcomes these obstacles, another group of problems arises. Like in
multivariate DR approaches, BSS positions data points on latent dimensions (the scores
in “loading-scores scheme”). Unlike multivariate DR approaches, the data points retain
their temporal/spatial order. In the language of PCA: The scores are temporally/spatially
distributed. As a consequence, latent dimensions in BSS are read and interpreted as
univariate time series or spatial fields. While analysis of such data can be challenging on
its own, the main issue arising in BSS is the amount of data to consider. Each execution
of BSS yields as many latent dimensions as there are original dimensions (a consequence
of BSS model assumptions). These latent dimensions appear in groups, as each is the
outcome of a particular parameter setting. Analysts are interested, e.g., in commonly
found latent dimensions with high signal (or other combinations of commonality vs.
signal) to decide what the “true” underlying processes are. It may also be useful to
connect relevant structures found in latent dimensions back to parameter settings, thus

2



1.1. Background and Methodology

further supporting parameter space analysis tasks. Working mainly in the text-based
RStudio development environment with the R programming language, all these tasks are
cumbersome and time-consuming to carry out.

Given the existing strong focus on visual inspection of BSS results and the mentioned
challenges concerning data management, mining, and processing, it seems promising to
employ Visual Analytics (VA). VA was defined by Keim et al. as “[combining] automated
analysis techniques with interactive visualizations for an effective understanding, rea-
soning, and decision making on the basis of very large and complex datasets” [Kei+08,
p. 157]. The general idea is to automate everything that can be automated and present
everything that cannot be by effective interactive visualizations to the human analyst.
VA has been already successfully employed to solve many BSS-adjacent problems. E.g.,
LiveRAC [McL+08] focused on visual analysis of many time series, which is also relevant
in TBSS. Attribute Signatures [Tur+14] is a path-based visual exploration idiom for
multivariate spatial data, which may be useful for SBSS. Several VA prototypes were
developed to support DR, e.g., iPCA [Jeo+09] or t-viSNE [CMK20]. Using various
computational models has been simplified by visualization-oriented parameter space
analysis, e.g., generators for visual effects [BM10]. Ensemble visualization is a sub-field
of visualization that focuses on the analysis of a group of (usually) temporal, spatial, or
spatio-temporal objects, such as hurricane trajectories [Liu+15] or precipitation forecasts
[Bis+17]. Set visualization [Als+16] can be considered another adjacent visualization
discipline, as it focuses on relations between groups of elements.

However, none of the mentioned examples completely capture the peculiarities of BSS-
related data and tasks. Ensemble visualization too often focuses on a single group of
objects, whereas in BSS, we have to consider many of them. Set visualization does so but
only considers simple elements, like strings. VA approaches for DR rarely incorporate
time and space the way BSS does. Visual parameter analysis tends to focus on parameters
detached from time and space, which is required for TBSS and SBSS. Approaches for
temporal and spatial data analysis may be useful for BSS result exploration, but they
need to be connected to the former aspects to facilitate the involved BSS analysis tasks.

In the remainder of this chapter we will provide an introduction to visualization/VA
(Section 1.1) and BSS (Section 1.1.3), after which we will formulate our research questions
(Section 1.2), list our contributions (Section 1.3), and close with an outline of the
remainder of the thesis (Section 1.4).

1.1 Background and Methodology

In this section we present historic background on visualization (Section 1.1.1), discuss com-
mon models used in visualization research which inform our methodology (Section 1.1.2)
and finally intend to give the reader intuition about BSS (Section 1.1.3).

3



1. Introduction

1.1.1 A Brief History of Visualization

Visualization is about getting insights from data. Its history is intertwined with that
of statistics, astronomy, and cartography, and goes back as far as the 10th century
[Fri08]. Although its use for cognition and inference remains unclear, what is credited
as the first line chart [Fun36] depicts the movements of seven celestial bodies over the
night sky. If the image was not just meant as a schematic illustration, it is likely that
poor observational tools and theory available at the time hindered its accuracy. In the
17th century, quantitative data began to be systematically collected (via government
mandates) and became more widespread. The idea of graphical representation of data
was established during that time, although being far from ubiquitous as it is today. The
following century then saw a variety of new graphical forms applied to new domains.
E.g., isolines (contours of equal value) were proposed by Edmund Halley in 1700, thus
starting what came to be known later as thematic mapping. Later in the 18th century,
two pioneers of data graphics introduced new ideas and graphics that are common to
this day: Johann Lambert and William Playfair, the latter of which is often seen as the
inventor of modern data visualization for his creation of bar charts and pie charts. While
the visual means more and more started to resemble what we know today, they were
far from obvious at the time. Michael Friendly [Fri08, p. 24] remarks that “[Playfair]
devoted several pages of text (...) describing how to read and understand a line graph.”

Figure 1.1: Charles Joseph Minard’s illustration of Napoleon’s losses. Image: [Min70,
vue 52]

Nonetheless, several examples can be found from that era where graphics were used to
argue, to convince, to making a point. One of the better known, due to the writings of
Edward R. Tufte [Tuf01], is Charles Joseph Minard’s illustration of Napoleon’s losses
against Russia in 1812–1813 (Figure 1.1). The image shows the size of Napoleon’s army
and its movement originating in today’s Lithuania. The march to Moscow is depicted
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1.1. Background and Methodology

as the thick beige line, where thickness encodes the size of the army (initially 422 000
men). The retreating path of 100 000 men is shown as a black line. As shown, crossing
the Berezina River was catastrophic and only 10 000 men returned. The map that
“may be the best statistical graphic ever drawn” [Tuf01, p. 40] shows several variables:
Temperature at various dates (bottom line chart), the size of the army, its location and
direction movement.

Another example from that time is the 1854 cholera map by John Snow (Figure 1.2),
the legend of which was told in countless “Introduction to Visualization” classes. The
story usually goes that in Broad Street, Soho, London, people were dying of cholera.
Everyone was puzzled and helpless. But John Snow took the data-driven approach and
counted and mapped the reported deaths. From the visualization, it became evident
that deaths were concentrated around a water pump. He ripped off the pump’s handle,
the outbreak eventually subsided, and lives were saved. Except little of that is true,
considering the arguments Kenneth Field recently collected [Fie20]: Already doctors
at the time suspected that cholera is waterborne, the outbreak was likely in decline
anyways, and the map was not used to identify the pattern of the outbreak, among other
wrong details. Rather, while no detail of the story was uniquely his idea, John Snow did
stay on top of scientific knowledge and bring together recent advances in epidemiology
and thematic mapping to craft an argument supported by data and graphics for the
transmission of cholera by water [Sno54].

Florence Nightingale, one of the founding figures of medical statistics, is another historic
figure that must be mentioned. Born into a wealthy family, she defied societal expectations
of her time and became a nurse at the age of thirty-three. In 1854, she served the British
army in the Crimean War, where she witnessed the magnitude of unnecessary deaths
due to bad sanitary conditions and unavailable medical supplies. Florence Nightingale,
together with like-minded supporters, sought to end the suffering. To achieve this,
they had to persuade the army’s higher-ups, who thought that the excessive death rate
are related to physical stress, bad food, or the weather, and thus unavoidable [And22].
Florence Nightingale did so by first of all collecting data and secondly by developing
appealing graphics based on that data. This procedure was uncommon at the time, where
data was presented mostly as tables. The graphics showed in a very convincing fashion,
among other facts, the extreme disparity of the death rate in the peacetime troops vs. the
common population, and the proportion of preventable deaths (Figure 1.3). Presented
with hard-to-deny facts, reform became inevitable for parliament. The subsequently
enacted health codes (and improved sanitary conditions before that, championed by
Nightingale) drastically improved the situation. For example, only 5 % of treated soldiers
died in May 1855 compared to 42 % in February [Fra02]. Nightingale’s work was so
influential that she became the first woman elected into the Statistical Society of England
in 1858.

The field of visualization really picked up in modern times, i.e., starting in the 1960s.
Jacques Bertin wrote his “Sémiologie graphique” in 1965, it was published in 1967 and
revised in 1973, then translated to English in 1983 [Ber83]. As one of the milestone books
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1. Introduction

Figure 1.2: John Snow’s cholera map. Image: [Sno54, Map 1]

on data visualization, it systematically discusses the role and applicability of different
visual variables, such as position, shape, color, or length, depending on the data that
needs presenting. Another milestone book was published in 1977: “Exploratory Data
Analysis” by John W. Tukey [Tuk77], in which the author argues that visual inspection
of the data is just as important as statistically supported hypothesis testing. We can only
confirm what we suspect, and the only way to obtain such suspicions is by unconstrained
exploratory analysis. He further highlights that the strength of visualization is in its
potential to emphasize unanticipated features of the data or problems of their quality.
Edward R. Tufte initially self-published “The Visual Display of Quantitative Information”
in 1983 [Tuf01]. The book condenses the practice of creating data graphics into a couple
of guidelines. Established concepts like “chartjunk” and “graphical excellence” originate
here. Although Tufte subscribes to a specific minimalist aesthetic of graphic design that
is not scientifically grounded in visual perception, his work became highly influential.
The 1980s was also the decade of the personal computer, where workstations became
smaller and powerful enough to carry out everyday tasks in little time. Researchers
quickly realized the potential of interactive graphics. Basic geometric interactions, such
as rotation or zoom, were established, but also the idea of animating data graphics, or
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1.1. Background and Methodology

Figure 1.3: Polar area chart showing cause of death in the British army. Blue wedges
denote preventable diseases, red wedges depict deaths from wounds, while black wedges
show other causes. Image: [Nig59, p. 19]

highlighting data points with brushing [CM88]. By 1987, visualization was recognized
as a research field within computer science [MDB87], and the first IEEE Visualization
conference (today: IEEE VIS) took place in 1990. Leland Wilkinson published “The
Grammar of Graphics” in 1999, in which he advocates to abolish the notion of a chart as
a rigid fully pre-specified type of graphic. Instead, he highlights the rules that govern
statistical graphs (i.e., the grammar), with which we can flexibly define various graphics.
His ideas became central to statistical plotting in R [R C23], where they were implemented
in the ggplot package [Wic16].

Also in 1999, Card, Mackinlay, and Shneiderman wrote that “the foundational period
of information visualization is now ending” [CMS99, p. xiii] and the time of intro- and
retrospection began. Let us first discuss what visualization is. Card et al. [CMS99,
pp. 6–7] define visualization as “the use of computer-supported, interactive, visual
representations of data to amplify cognition.” Colin Ware mentions a somewhat loose
definition of “a graphical representation of data or concepts” [War04, p. 2]. Tamara
Munzner [Mun14, p. 1] later used “computer-based visualization systems provide visual
representations of datasets designed to help people carry out tasks more effectively” as
a definition. Visualizations are seen as external tools to aid thought and reasoning in
a specific task, similar to pen and paper for multiplication or a compass and a map
for navigation. Because “the power of the unaided mind is highly overrated” [Nor94,
p. 43], visualization brings several advantages compared to carrying out the same task
without it [War04, pp. 3–4]. For one, “visualization provides [the] ability to comprehend
huge amounts of data.” It also “allows the perception of emergent properties that were
not anticipated.” Consequently, “visualization supports hypothesis generation,” which is
exactly Tukey’s argument for exploratory visual analysis [Tuk77]. Finally, “visualization
often enables problems with the data itself to become immediately apparent,” e.g., in
the form of missing or erroneous data. In the words of John Tukey [Tuk77, p. vi], “the
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greatest value of a picture is when it forces us to notice what we never expected to see.”
Great examples that bring these points home are Anscombe’s quartet or Datasaurus
dozen (Figure 1.4): Scatterplots of two variables with identical summary statistics, but
wildly different visual appearances.

slant_down slant_up star v_lines wide_lines x_shape

away bullseye circle dino dots h_lines high_lines

Figure 1.4: Datasaurus’ dozen [MF17]. All scatterplots have the same mean, variance
and Pearson’s correlation. Recreated using the quartets R package [DAg23].

1.1.2 Visualization Pipelines, Processes, and Models

Visualizations can be thought of “adjustable mappings from data to visual form to the
human perceiver” [CMS99, p. 17]. A widely accepted model for a visualization pipeline,
i.e., a series of such mappings, is the InfoVis pipeline (Figure 1.5). First, raw data
has to be translated into neat data tables, i.e., relational descriptions of attributes we
care about. Those tables are then mapped to visual structures by encoding attribute
values in graphical properties (e.g., position, size, or color) of visual marks (points, lines,
areas, volumes). Finally, the view, the particular image, is created from those structures,
possibly dependent on view transformations, like rotation, zooming, or distortion.

Figure 1.5: InfoVis Pipeline after Card et al. [CMS99, Fig. 1.23]

Interactivity has been recognized as a defining feature of visualizations, as evidenced by
the presented definitions and the fact that the InfoVis pipeline accounts for interaction
in all pipeline steps. The reason for interacitivity arises from the fact that even though
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an image is worth a thousand words, it can only show so much while fitting into a
typical computer screen. Getting insights from current datasets often involves switching
between various points of view (figuratively and literally) and between multiple levels
of detail, e.g., between aggregations/summaries and individual data cases. Interactions
can modify data transformations (e.g., details-on-demand, brushing, dynamic queries),
visual mappings (e.g., pivot tables), and view transformations (e.g., lenses [Tom+17] or
geometric navigation like pan and zoom). They are thus a crucial component in scaling
visualizations to both the size of the dataset and the number and complexity of questions
we have. Insights from data have to be obtained over time; a fact that van Wijk [vWij05]
later recognized in his visualization model (Figure 1.6) that was used to reason about
the economic (as in gain vs. effort) value of a visualization. In that model, visualizations
(V) are built from data (D) and a specification (S), which are comparable to data tables
and visual mappings of the InfoVis pipeline. The image (I) is perceived (P) by the user,
who learns something and thus gains knowledge (K). That new knowledge leads to new
hypotheses, which they test by changing the specification in an interactive exploration
(E) process.

Figure 1.6: A model for visualization by van Wijk. Image: [vWij05, Fig. 1] © 2005 IEEE

As computer-supported is a key feature of visualization and as the amount of data to sift
through grew ever larger while the power and sophistication of data mining techniques
increased, visual analytics emerged. Thomas and Cook defined VA as “the science of
analytical reasoning facilitated by interactive visual interfaces” [TC05, p. 4]. Keim et al.
[Kei+08, p. 157] later specified further that visual analytics “combines automated analysis
techniques with interactive visualizations for an effective understanding, reasoning and
decision making on the basis of very large and complex data sets.” The goal of VA
is to “detect the expected and discover the unexpected,” “provide timely, defensible,
and understandable assessments,” “communicate assessment effectively for action,” and
“synthesize information and derive insight from massive, dynamic, ambiguous, and often
conflicting data” [Kei+08, p. 157]. The key difference to visualization is that VA is
an “integral approach to decision-making, combining visualization, human factors and
data analysis” [Kei+08, p. 158]. VA is a inter-disciplinary research field combining
visualization, data mining, perception, data management, statistics, human-centered
computing, and other related fields [Kei+08, Fig. 2–3]. Conceptually, VA builds on the
InfoVis pipeline (Figure 1.5) and van Wijk’s model (Figure 1.6) to account for the tight

9



1. Introduction

integration of automated analysis methods and interactive visualizations (Figure 1.7).
The model, a computer-internal representation of the real world built from collected data,
appears as its own box. After necessary data transformations to arrive at data tables,
the data may either be visualized or used in data mining to build the model. The analyst
has to evaluate the model and assess its appropriatenes, then adjust it as necessary. To
do so, interactive visualizations are employed to support, e.g., selection of parameters.
These are the model building and model visualization arrows in Figure 1.7, which allow
to discard low-quality analysis results at an early stage. Ultimately, knowledge is gained
from the interplay between interactive visualizations and automated analysis techniques.
Andrienko et al. [And+18] arguably went a step further when they more recently provided
a goal-oriented alternative to the process-oriented VA definitions. Following the VA
tasks assess, forecast, and develop options by Thomas and Cook [TC05], they define
corresponding descriptive, predictive, or decision supporting models. The desired end
product (goal) of a VA process is an appropriate model to support either of the three VA
tasks.

Figure 1.7: VA process after Keim et al. [Kei+10, Fig. 2.3]

As visualization (the field) aims to aid in the analysis of an often very complex dataset,
naturally the question arises how such a visualization (the image) should look like. Obvi-
ously, the design process should incoroporate the intended target users, the characteristics
of the dataset and what users want to know from the dataset. While the previously men-
tioned models describe the intended high-level VA process/goal and some [And+18] are
even a bit instructive how to achieve that, in a specific problem instance the visualization
designer remains with many questions. They have to figure out what entities, attributes
and relationships in the dataset are important to the intended users. As visualizations
are computer-generated and computers need very specific instructions, a precise visual
mapping from data to image has to be defined. In addition, data mining algorithms
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need to be found, assessed, and parameterized. Because visualization designers are, most
of the time, not the visualization’s target users, the two groups have to collaborate on
the design. As such, visualization design is a form of problem-driven research and fits
to an interpretivist research paradigm [MD20]. The latter is intuitively understood by
considering that another designer will most likely not produce the same visualization,
all other parameters and context being equal. Sedlmair et al. [SMM12] formalized
their learnings in this problem-driven research into the Design Study Methodology. The
authors define a design study as following [SMM12, p. 2432]:

“A design study is a project in which visualization researchers analyze a
specific real-world problem faced by domain experts, design a visualization
system that supports solving this problem, validate the design, and reflect
about lessons learned in order to refine visualization design guidelines.”

Among other contributions, the Design Study Methodology proposes a 9-stage framework
to the process (Figure 1.8) and common pitfalls that threaten a successful outcome. For
instance, the first three stages (precondition phase) are comprised of learning about
related visualization literature and about selecting collaborators as well as identifying
their roles. Possible pitfalls in these stages include unavailability of real datasets or
that visualization is actually not required. The core phase consists of characterizing the
expert’s problem and formulating a task abstraction (discover), designing a visualization
to solve those problems, and finally implementing the design and deploying the tool.
Several pitfalls may occur in this phase as well, e.g., prototyping designs may take too
much time, too early commitment to a particular design, or evaluating designs without
their intended users. The final analysis phase incorporates reflecting on the work and
inform future visualization guidelines by writing the design study paper. Pitfalls in this
phase include, e.g., telling the story chronologically instead of focusing on results or
ending the design study prematurely.

Figure 1.8: The 9-stage framework of the Design Study Methodology. Image: [SMM12,
Fig. 2] © 2012 IEEE

Tamara Munzner [Mun09; Mun14] suggests four nested levels that a visualization designer
has to tackle (Figure 1.9) in visualization design. The four levels are meant to be visited
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as necessary, so a strictly sequential order is not required. Each level also suggests
different ways to evaluate the visualization.

Figure 1.9: Munzner’s Nested Model of Visualization Design. Image: [Mun09, Fig. 1]
© 2009 IEEE

L1, Domain Situation. In the first level, the designer learns about the domain experts’
specific but big-picture situation: Who are the visualization’s target users, what data do
they handle, what do they want to find out from the dataset, how do they currently solve
the problem, and so on. These questions can be answered by a variety of ethnographic
research methods, but often involve discussions with the experts and observing them work
in practice while interrupting for questions [SMM12]. A simple and effective overarching
framework to start with is the design triangle by Miksch and Aigner [MA14]. The vertices
of the triangle are the data, the users, and their tasks, while edges represent requirements
to the resulting visualization (Section 1.1.2). Expressiveness means that the visualization
show only the necessary information and nothing more. Effectiveness mainly relates to
“good” visualization design (compare paragraph L3 below), e.g., making use of popout
effects and tailoring visualizations to the user’s needs. Lastly, appropriateness refers
to cost vs. gain considerations which can be assessed with van Wijk’s economic model
[vWij05].

L2, Data/Task Abstraction. Next is the second level, where learnings from the first
level are specified into domain-independent abstractions. Many domains work on the same
data and have similar tasks, but use different vocabulary. Abstracting from the particular
vocabulary suggests related problems and computational solutions, while also increasing
the potential for transferability to other contexts of the eventually found visualization.
After an initial problem characterization (L1), task taxonomies and typologies become
highly useful in this level. These can be general taxonomies for all kinds of visualizations,
such as Shneiderman’s mantra [Shn96] of overview first, then details on demand, the

data

users tasks

effectivenessexpressiveness

appropriateness

Figure 1.10: The design triangle after Miksch and Aigner. [MA14]
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intent-based interaction taxonomy by Yi et al. [YKS07], the goals–tasks bridge by Lam
et al. [LTM18], or Brehmer and Munzner’s multi-level typology for abstract visualization
tasks [BM13]. The latter is especially useful as it incorporates high-level goals (e.g.,
does the user want to present the data or discover findings?), intermediate-level search
tasks and low-level queries while accounting for interactions with visualizations and the
data itself. Other task taxonomies focus on specific data types and are helpful if one
happens to work with such data. Especially relevant in our case are the task taxonomy
for exploratory analysis of spatio-temporal data by Andrienko and Andrienko [AA06]
or the taxonomy for interactive cartography by Roth [Rot13]. Further of interest are
taxonomies that do not focus on data types but a certain class of analysis tasks. E.g.,
Sedlmair et al. [Sed+14] propose, among other things, six parameter space analysis tasks:
Optimization, sensitivity analysis, uncertainty analysis, fitting, partitioning, and outliers.
Nonato and Aupetit [NA19] discuss the relations between DR, data characteristics and
analytic tasks, such as naming a latent dimension or clusters. Understanding user tasks
is especially important as it points to their knowledge gaps, which in turn is necessary to
design appropriate guidance [Cen+17].

L3, Visual Encoding and Interaction Idiom. The particular visualization images
and interactions are designed in the third level. Based on the identified tasks and required
information to accomplish them, the visualization designer chooses and modifies existing
visualization and interaction idioms. Munzner [Mun14, p. 12] argues that designers should
seek to satisfy, not optimize a visualization design, as the design space is usually too large.
They should initially consider a large number of possible designs and then iteratively
filter it down to the winning candidate. Hence, while visualization idioms that the
target users are familiar with should be given special attention, the visualization designer
must also learn and consider existing visualization/VA approaches for the data at hand,
e.g., time-dependent data [Aig+23], geospatial data [He+19; Yos+20], spatio-temporal
data [Bac+17], network data [FAM23], etc. Further, knowledge of human perception
is critical for an effective design. E.g., it is well known that visual channels, such as
position, size, or color hue, differ in accuracy and bias when encoding quantitative,
ordinal, or categorical variables [CM84; Mac86; Mun14; McC+22]. Their perception
usually also depends on their surroundings, as the human visual system is profoundly
relative. E.g., the Ebbinghaus illusion (Figure 1.11) shows that size perception depends
on the elements around the target. The human visual system also cannot separate some
channels (e.g., red part and blue part of color hue), which should generally be avoided.
Preattentive processing (“popout”) on the other hand should be sought after to present
critical information. In case of multiple visualizations, e.g., coordinated multiple views,
general models of VA [Kei+08; vWij05; Sac+14; And+18] that were discussed earlier,
can help to build and define the interplay between them.

L4, Algorithm Design In the last level, the designer focuses on the intricate details
of the algorithm that constructs the desired visualization. First and foremost, its
correctness should be verified, i.e., that it terminates and produces a correct result. This
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Figure 1.11: Ebbinghaus Illusion. The two center circles are the same size, but appear
different due the outer circles’ relative sizes.

can be achieved by formal systems (e.g., Hoare rules) or more simply by software testing
methods. Next, it is important that the algorithm terminates within time frames suitable
for seamless human-computer interaction. Waiting times below 100 ms are referred to
as instantaneous, below 1 s as noticable but short enough to keep the user’s “train of
thought”, and below 10 s as short enough to keep the user at their desk [CRM91, Tab. 3].
Response times of algorithms may be evaluated with benchmarks on suitable datasets
[Lam+12]. If it turns out that an algorithm is unsuitable for interactive time frames, due
to its complexity or the sheer amount of data it must handle, a viable solution may be
Progressive VA [Ang+18], where visualizations are rendered progressively.

L1–L4, Validation. To ensure that the VA solution works as intended, validation
is required at each of the four levels. The design study pitfalls by Sedlmair et al.
[SMM12] can help avoid mistakes in the validation process. Munzner [Mun14, Sec. 4.5]
suggests “threats to validity” at each level, specifically wrong problem (L1, misunderstood
user’s needs), wrong abstraction (L2, visualization shows the wrong thing), wrong idiom
(L3, flawed way of visualizing the thing), and wrong algorithm (L4, code is too slow).
Munzner [Mun14, Sec. 4.6] then proposes to distinguish between downstream (i.e.,
after implementation) and immediate (before implementation) validation, where every
validation is supposed to counteract the threat at the respective level. To avoid too
slow code (L4), one may take into account the algorithm’s computational complexity
before implementation (immediate) and test the implementation’s efficiency by measuring
time/memory consumption (downstream). The implementation’s correctness can be
validated formally or by software testing approaches. To avoid the wrong idiom (L3)
immediately, one can only provide an educated justification that the particular design
choices are likely to be useful. On the other hand, many alternatives exist in the
downstream direction. The Seven Scenarios by Lam et al. [Lam+12] provide a good
taxonomy and summary of validation strategies. The authors distinguish between
understanding data analysis and understanding visualizations. The former is concerned
with how a visualization impacts the user’s workflow, i.e., whether they can do the same
tasks faster or gain previously unattainable insights. More specifically, this category
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further groups into the following:

• environment and work practices, i.e., how are visualizations used today in a partic-
ular domain?

• visual data analysis and reasoning, i.e., does a visualization support insight and
hypothesis generation?

• communication through visualization, i.e., how can visualization support communi-
cation in the wider sense, such as teaching or presenting?

• collaborative data analysis, i.e., does a visualization system support collaborative
analysis where multiple people arrive at a joint conclusion?

As such, common validation strategies for understanding data analysis are qualitative
research methods: Observing users using the tool, usability questionnaires using Likert
scales [Sou+22], heuristic expert evaluations [Wal+19], or unstructured interviews. The
latter (understanding visualizations) cares about the visualization itself, i.e., if it is quicker
to produce or better at specific tasks than alternatives. To validate that stage, quality
metrics (if available) may be used on the generated images or controlled laboratory
experiments may be conducted that measure participants’ completion time and error for
specified tasks, in addition to the strategies outlined for L4 previously. To ensure that the
abstraction is right (L2), one may only do that in the downstream direction. Validation
approaches for understanding data analysis may be used here. Similarly, according to
Munzner [Mun14, p. 77–78], only downstream validation is available to validate that the
right problem was solved (L1), e.g., by collecting adoption rates after deployment or field
studies.

1.1.3 Blind Source Separation

BSS is a statistical modeling framework that originated in the signal processing community
in the 1980s. A summary of its history can be found, e.g., in [CJ10; YHX14]. BSS’s goal
is to separate source components from a mixed signal, but, as the “blind” in the name
indicates, the source components themselves are unobserved. (This thesis refers to them
as latent “sources”, “components,” or “dimensions.”) The classic example to motivate
BSS is the “cocktail party problem.” At a party, where the room is filled with a mix of
all simultaneously happening conversations, it is easy for humans to focus their attention
on individual speakers and separate their voices from others. This is, essentially, what
BSS aims to achieve. Prior knowledge has to be assumed about the properties of the
source signals, the mixing process, or how noise is integrated into the models to make
the problem tractable. The general data flow of BSS (for the purpose of this thesis) is
illustrated in Figure 1.12.

For this thesis, we consider instantaneous linear mixture models for multivariate data. The
goal of this section is to provide the reader some intuition about BSS tuning parameters.
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Figure 1.12: A data flow model of BSS. BSS methods considered in this thesis take
tuning parameters and the multivariate dataset as input, and provide latent components
as output by way of the unmixing matrix.

This section is not a detailed discussion of BSS and all its models, or how they relate to
other statistical modeling techniques, which is far better explained elsewhere, e.g., [CJ10;
YHX14; NO18; Pan+21; Mue21] and references therein. We will refer to a BSS model as
specific set of assumptions imposed on latent components.

It turns out that the same problem statement has applications in various domains.
Various BSS models were used in speech signal separation, communications, image
processing, earth sciences, or biomedical analysis [YHX14]. There are two major purposes
for obtained latent components. They may be inspected visually to learn about the
measured phenomenon. For instance, Liu et al. [Liu+19] propose a BSS model to de-noise
radar measurements of bridges, which can determine their structural integrity. On the
other hand, latent components may be the input for other algorithms. In the context
of multivariate spatial prediction, Muehlmann et al. [MNY20] showed that combining
univariate models of latent components is comparable to and often better than (usually
complex) multivariate modeling techniques. Noisy or non-informative sources may be
removed in such an application to obtain a dataset with lower dimensionality.

More formally, the basic BSS model is a location-scatter model stating that

x = Az + µ (1.1)

where x is the p-variate mixed signal, z is the p unknown standardized source signal, µ
is a location vector and A is the p× p mixing matrix. The goal is to find an unmixing
matrix W that can recover z, i.e., z = W (x− µ), up to sign and order of z. In theory
and practice, this procedure often involves the (joint) diagonalization of various so-called
scatter matrices [TI06; NR22].

Common in all BSS models is that the statistical properties (like independence or
stationarity) of latent components are known due to the framework’s model-based
approach. Knowing them can help to decide what is appropriate to do subsequently
with the obtained sources. For state-of-the-art DR techniques used in visualization,
like UMAP or t-SNE, this is not the case, although also arguably not that relevant.
Another advantage of BSS models handling temporal or spatial data is that they properly
and explicitly model such dependence (cf. Tobler’s law [Tob70]) in the assumptions
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about latent components. This property makes such models preferable over alternatives
that do not account for them. Because models discussed in this thesis consider linear
mixtures and BSS retains the loading-scores scheme from PCA, latent components are
easily interpretable in the sense that individual scores of a source directly relate to input
variables.

The downsides or potential drawbacks of BSS models are what motivates this thesis.
The recently developed models for temporal and spatial multivariate data take complex
tuning parameters that will be presented in the following subsections. Currently, no
goodness-of-fit measures or tests exist for BSS that could decide if one parametrization
is preferable over another. Consequently, analysts must compare latent components
obtained by various parametrizations, which is demanding for several reasons. First of
all, due to the tuning parameters’ complexity and importance, the analyst has to try out
several settings. For p-variate temporally or spatially distributed data, each new BSS
method yields p new latent components to consider. They can add up quickly especially
when the application domain deals with several dozen variables, as it is common, e.g., in
geochemistry. latent components obtained with BSS usually have properties, by model
assumptions, that further complicate visualization and data mining. They are defined
only up to sign and order, which means that any source can have its sign reversed and
still be a valid solution. Since sources are not ordered, functions that derive a number by
which sources can be ordered are required. These functions must not use the first two
moments, which are equal for all sources.

As mentioned earlier, one arrives at different BSS models depending on various modeling
assumptions. When z are assumed to be independent, identically distributed (iid), the
model is Independent Component Analysis (ICA): Samples of each source have to be
identically distributed, and all pairs of sources have to be independent of each other [CJ10,
p. 12], which allows for only one Gaussian source whereas the rest has to be non-Gaussian.
ICA is often compared to the well-known PCA. While PCA finds components (sources)
that are orthogonal and in the directions of highest variance, ICA obtains independent
and not necessarily orthogonal components using higher-order statistics, such as kurtosis.

When samples are ordered in time, it is no longer realistic to assume that subsequent
samples are independent of each other, and one arrives at TBSS models (Section 1.1.3).
Following Tobler’s law [Tob70], a similar argument can be made for spatially distributed
data (SBSS, Section 1.1.3), where nearby collected samples are expected to be more
alike than two samples collected far away from each other. Models for these two cases
will be discussed in the following sections together with brief application examples. A
common theme in temporal/spatial BSS is that the particular methods diagonalize
multiple covariance matrices, e.g., the sample covariance matrix and the autocovariance
matrix at a given lag in the case of Algorithm for Multiple Unknown Signal Extraction
(AMUSE). Or in the spatial case, the sample covariance matrix and a so-called local
covariance matrix. There is a parallel between all these covariance matrices in that, if we
take i, j as one-dimensional indices for time steps or two-dimensional indices for spatial
locations, the matrices in question are computed as ∑

i,j f(i, j)x(i)x(j)′, where f(i, j) is
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a function providing weights based on the distance between i and j. E.g., the sample
covariance is obtained with f(i, j) = I(i = j), the (temporal) autocovariance at lag τ
with f(i, j) = I(|i− j| = τ) and the (spatial) local covariance within a ring (r1, r2) with
f(i, j) = I(r1 ≤ |i− j| ≤ r2). I(·) denotes the indicator function, i.e., it resolves to 1 if
its argument is true and 0 otherwise.

Temporal Blind Source Separation

TBSS is used for multivariate time series, i.e, vectors associated with points in time.
Applications include, e.g., finance [OKM00], environmental sciences [NFF21], or health-
care [dLdMV00]. An example for the latter is depicted in Figure 1.13. Figure 1.13a
shows the raw readings from eight electrocardiogram (ECG) electrodes to measure the
heart’s electrical activity. Notably, the patient is a pregnant woman, so the ECG data
include signals of two hearts. TBSS may be used to filter out the fetus’ heartbeat (IC3
in Figure 1.13b), which is a non-invasive way to check if it is healthy, e.g., that the heart
does not miss any beats or behaves irregularly in other ways.

Starting from the base BSS model, we add time steps t to signify the temporal order of
observations:

x(t) = Az(t) + µ, t ∈ {1, . . . , T} (1.2)

Just as in time series modeling, one has to make assumptions about the sources’ charac-
teristics to make any sort of inference. One fundamental concept is that of stationarity.
Informally, stationarity means that the behavior of the time series does not change
depending on when we start to observe it — it will look roughly the same at intervals of
the same length [PW10, p. 6]. A multivariate time series x(t) is said to be weakly or
second-order stationary if its first and second moments exist and are constant. When
that is the case, the covariance between its variables (cross-covariance) and the covariance
with itself (autocovariance) depends only on the temporal distance |t1− t2| (lag) between
two time steps.

A popular sub-model of BSS is the second-order separation (SOS) model, where z(t) are
assumed to be second-order stationary. Sources can be recovered by assuming distinct
serial dependence structures, i.e, Cov(zt, zt−τ ) is a diagonal matrix for all t ∈ Z and
τ = ±1,±2, . . . . The first proposed TBSS method of this sort was the AMUSE [Ton+90],
which diagonalizes the covariance matrix and an autocovariance matrix given at a lag τ
to estimate the unmixing matrix Ŵ . Thus, τ is a tuning parameter that the analyst has
to select and the separation performance greatly depends on that choice. Consequently,
AMUSE was later generalized to Second-Order Blind Identification (SOBI) [Bel+97],
which jointly diagonalizes several autocovariance matrices. By incorporating information
at multiple lags T = {τ1, . . . , τk}, the individual lag choices become less critical, but
the space of possible tuning parameter selections increases from T to 2T , where T is
the length of x(t). BSS has applications in various fields and it is expected that the
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(a) Input variables.

(b) Latent components.

Figure 1.13: TBSS example application in healthcare. a) Ten seconds of ECG data by
a pregnant woman. The readings include both the mother’s and the fetus’ heartbeat.
The former is much stronger and masks the latter. b) Eight components identified in the
ECG. The fetal heart beats faster than that of an adult as visible in IC3.

time series’ key characteristics vary between fields. Put bluntly: An ECG reading looks
different than the prices at which Apple shares are traded. Especially financial time
series, like stock prices, often exhibit sudden spikes and thus are not well characterized by
second-order moments, like autocovariance matrices. Most information is in higher-order
moments and that property is called “stochastic volatility”. This fact was taken into
account by Matilainen et al. [Mat+17], who proposed a family of estimators called variant
of Second-Order Blind Identification (vSOBI). As a variant of SOBI that diagonalizes
scatter matrices of lagged fourth moments, vSOBI shares the tuning parameter space
with SOBI, which is again a set of lags T. As SOBI cannot separate sources exhibiting
stochastic volatility and vSOBI does not perform well on sources without that property
[Mat+17], Miettinen et al. [Mie+20] developed a weighted version between the two,
called gSOBI. The weight b ∈ [0, 1] specifices the weight of the linear part, so gSOBI
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reduces to SOBI when b = 1 and to vSOBI when b = 0. Consequently, tuning parameters
in addition to the weight b are lag sets for the two models, i.e., T1 for SOBI and T2 for
vSOBI.

If time series are allowed to have time-shifting first or second moments, one finds
themselves in a non-stationary environment. Such models may be, e.g., block-stationary
models that assume the temporal dimension can be subdivided into contiguous non-
overlapping blocks in which the second-order stationarity assumption again holds. The
definition of such blocks then becomes the burden of the analyst, which further enlarges
the available tuning parameter space. Such TBSS models are not considered in this
thesis, but they are a direct equivalent to non-stationary SBSS models discussed in the
next section.

A common theme in the literature of TBSS models is that the particular choice of tuning
parameters is crucial for separation performance [TLS05; TMN16; Mie+20; Pan+21].
For gSOBI, Miettinen et al. [Mie+20] propose a default of b = 0.9, as the vSOBI part
dominates equal weightings, but give no recommendations regarding the lag sets for
SOBI and vSOBI. Tang et al. [TLS05, p. 508] investigated SOBI parameter settings for
electroencephalogram (EEG) data and discovered that “the ability of SOBI to isolate
signals associated with neuronal activations from specific brain regions depends on the
appropriate selection of [lags].” While the authors propose a “standard set” of lags, it is
unclear how (if) those translate to other fields. TBSS theory does provide guidelines,
for instance, that lags are preferred which maximize the difference of diagonal entries in
corresponding (cross-)moment matrices of z. Informally, it means to choose lags such
that the temporal behavior of latent components at the chosen lags is as distinct as
possible. However, such guidelines that relate to unobserved sources are unfortunately of
limited practical use.

Spatial Blind Source Separation

SBSS deals with the analysis of multivariate spatial data, i.e., vectors associated with
locations in space. An example are geochemical surveys, like the Kola project [Rei+98].
Among other samples, moss was collected at ca. 600 spatial locations and the amount
of 31 chemical elements in it measured. Figure 1.14 shows plots of the (alphabetically)
first and last element in the dataset, which is publicly available as part of the StatDA R
package [Fil23]. On the other hand, Figure 1.15 shows the first two components obtained
with SBSS [Nor+15] and a 50 km ball kernel parameter. Low values (circles) in SBSS
component 1 clearly concentrate around Nikel’ and Zapolyarny in Russia and show the
nickel-processing industry located there. SBSS component 2, on the other hand, shows
an east–west pattern that “separates industrial contamination from the background on a
large regional scale.” [Nor+15, p. 766]

Starting again from the base BSS model, we add locations s ∈ S ⊆ Rd to indicate position
in a d-dimensional Euclidean space:
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(a) Silver (Ag). (b) Zinc (Zn).

Figure 1.14: Plots of two out of 31 elements in collected moss samples as part of the Kola
project [Rei+98]. Values are binned into 20 % bins (quintiles) encoded by big circles
(first 20 %), small circles (second), dots (third), small crosses (fourth) and big crosses
(fifth) following geochemical mapping practices [Rei+08].

x(s) = Az(s) + µ, s ∈ S (1.3)

As the model considers spatially distributed vectors, i.e., multiple variables associated
with locations, we find ourselves in the realm of (multivariate) geostatistics. A core notion
in geostatistics is that of a random field. A p-variate random field x(s) is a family of
random p-variate vectors indexed by the spatial domain S ⊆ Rd. Notably, a random field
exists everywhere in S, but we only ever see one realization of it at some sample locations
C ⊂ S. One common task of geostatistics is prediction: What measurements can we
expect in locations where we did not observe the random field? To model a random field
exactly in order to answer that question, all its moments have to be described, which
is usually infeasible. A common simplification is then to only consider the first two
moments, given by the mean function and the spatial covariance function. The latter is
written as Cov(x(s1), x(s2)), but, as modeling the random field in terms of all location
pairs is also usually infeasible, further simplifying assumptions are that the covariance
function depends only on the distance between locations (stationarity) and that it is not
dependent on the angle between locations (isotropy). More detailed discussions of spatial
covariance functions can be found in [Wac03; GK15].

Given these two assumptions of stationarity and isotropy, the corresponding BSS model
is that proposed by Nordhausen et al. [Nor+15]. Its asymptotic behavior was later
investigated by Bachoc et al. [Bac+20]. The model can be seen similar in spirit to
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(a) SBSS Component 1. (b) SBSS Component 2.

Figure 1.15: First two components identified in the Kola dataset with SBSS. Visual
encoding identical to Figure 1.14.

AMUSE from the TBSS context as it diagonalizes the sample covariance matrix and a
so-called local covariance matrix LCov. This matrix is computed with the help of kernel
functions providing weights for each pair of locations. Bachoc et al. [Bac+20] propose
three such spatial kernel functions: A ball (circle) fball parametrized by its radius r, a
ring fring parametrized by inner and outer radius rin, rout, and a Gauss kernel fgauss

which is a “smooth” version of fball. These are the kernel tuning parameters of SBSS.
Similar to the temporal lag in AMUSE, the kernel choice and parametrization matters
greatly for separation performance. Akin to the improvement by SOBI over AMUSE
in the time series context, Bachoc et al. [Bac+20] formulate a stationary SBSS model
where multiple local covariance matrices are involved. The tuning parameter space’s size
then multiplies accordingly, as several kernels can be chosen and parametrized.

The assumption of stationarity might not be realistic for the dataset at hand, especially
so when the sample locations are distributed over a wide area. This can be the case,
e.g., for geochemical surveys, such as GEMAS [Rei+14]. GEMAS combines chemical
soil measurements taken at roughly 2 100 locations across Europe. As such, it includes
regions that differ considerably regarding climate, rock formations, soil type, population,
or land use. To account for this, Muehlmann et al. [MBN22] adapted the block-stationary
model from TBSS to the spatial context. The blocks are called “regions” and we get the
regionalization tuning parameter, i.e., a partition of locations. The stationarity condition
is assumed to hold within each region. A local covariance matrix is computed for each
region, and they are jointly diagonalized [MBN22, Def. 4]. Again the tuning parameter
space’s size multiplies by all possible partitions.

Also in the SBSS literature the importance of tuning parameter settings were recognized.
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Bachoc et al. [Bac+20] conducted simulation studies and found, somewhat expectedly,
that incorporating more than one kernel yields more stable sources, whereas the BSS
outcome is more sensitive to the particular choice of a single kernel parameter setting.
The simulation studies conducted by Muehlmann et al. [MBN22] suggested that the
regionalization tuning parameter has more influence on separation performance than
the kernel. Similar as in TBSS, SBSS theory would prefer kernels that distinguish the
spatial dependence of latent components as best as possible. Fuzzy guidelines, such as
“not too small and not too large” kernels, relate to the fact that too small kernels capture
too little spatial dependence structures, while a too large kernel at some point does not
account for spatial dependence at all anymore. Even considering all that advice, selecting
appropriate SBSS tuning parameters remains a challenging task for analysts.

1.2 Research Questions
BSS is well suited to be tackled with VA approaches as the current process resembles
the VA model quite well already (Figure 1.16) as it combines visual data exploration
and automated analysis (with BSS). The considered data are multivariate time series or
spatial fields (blue box in Figure 1.16). Analysts employ BSS to decompose them into
latent components (green box). Latent components need to be visually inspected (red
box). By doing so, analysts learn about the components, the data they represent, or the
model’s tuning parameters (yellow box). In addition, BSS analysis is highly exploratory
[BH19], a kind of analysis that (interactive) visualizations are traditionally expected to
support greatly [Tuk77]. The exploration concerns, e.g., the tuning parameters, as their
appropriateness to the dataset at hand and their relation to resulting latent components
are a-priori unknown. The analyst also does not know what components to expect or
how they comprise the input dataset. Features in components have to be identified.
Only when a hypothesis as to what they represent is available can the analyst switch to
confirmatory analysis. For example, they might visually test if a spatial cluster of high
scores in a certain region coincides with a type of sediment by overlaying two maps.

Following these considerations, the main research question handled in this thesis is: How
can we use VA best practices to aid usage of BSS techniques in time and
space? For practical purposes we divide it in the following subquestions:

RQ1 What are the characteristics of effective guidance for temporal and spatial BSS
parameter selection?

RQ2 Which VA methods can be utilized to explore ensembles of temporal and spatial
BSS components?

RQ3 How can we characterize tasks BSS analysts carry out, especially to explain latent
temporal and spatial components?

RQ4 Can we adapt approaches suggested to explain multivariate DR to temporal and
spatial latent components?

23



1. Introduction

Figure 1.16: BSS in the VA model by Keim et al. (compare Figure 1.7). Multivariate
time series or spatial fields (blue box) are decomposed into latent components with BSS
(green). These components are plotted with static graphics (red) and visually inspected
to gain knowledge (yellow).

Our reasoning for the subquestions is the following.

RQ1. Tuning parameters are crucial for the performance of BSS, but few practical
guidelines exist. Analysts need guidance in the tuning parameter selection process, but
their intricate tuning parameters or outputs (sets of components) are not currently
considered in visualization literature.

RQ2. After several tuning parameter settings have been selected, analysts eventually
must compare and decide between latent components. However, they are many and come
in sets; cherry-picking components from several BSS methods or parametrizations is not
an option. Suitable VA approaches have to be identified and/or developed to support set
relation tasks.

RQ3. BSS task characterizations are missing in the visualization literature. Such task
descriptions can be helpful for other visualization researchers to identify suitable VA
solutions. Investigating especially the process of explaining patterns in latent components
could be enlightening for (e.g., spatial) visual data analysis. Relating identified tasks to
existing taxonomies might strengthen the latter.

RQ4. In multivariate (non-temporal and non-spatial) DR literature, several ways
are proposed to explain a facet of the reduction process. E.g., which area of the DR
scatterplot represents which original variable(s) [Sil+15; Soh+22] or where boundaries
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between categorical variables are located [Esp+23]. Furthermore, a subset of latent
components can represent the original data only imperfectly, so visualizing the projection
quality also received attention [Sta+16; Jeo+22]. These approaches, however, do not
consider temporal or spatial data and they have to be adapted to BSS. They also ususally
do not indicate, e.g., whether the error is acceptable or how to improve it, which would
be helpful in a practical BSS setting.

1.3 Contributions
Our work has been published in peer-reviewed scientific journals, such as Computer
Graphics Forum or IEEE Transactions on Visualization and Computer Graphics, and
our results have been presented at scientific conferences, like IEEE VIS or EuroVis. The
scope of these journals and conferences is visualization and VA. Each of our contributions
presents the VA approach, an evaluation thereof including discussion of the results, as
well as an outline for future work.

The overarching contributions of our work to the field of VA are:

• Investigating how a latent variable model (BSS) can support the analysis of multi-
variate temporal and spatial datasets;

• Identifying challenges and gaps analysts encounter when applying BSS to a given
dataset;

• Developing and evaluating VA approaches to solve these gaps and challenges,
particularly regarding BSS parameter-output relationships (compare Figure 1.17),
as well as providing a contextualization to the visualization literature, for:

– Parameter optimization and result exploration for TBSS (P1);
– Parameter optimization for SBSS (P2);
– Sensitivity analysis for SBSS parameters (P3);

• Utilizing dissimilarity information in existing and novel ways to support analytic
tasks in TBSS and SBSS;

• Summarizing results and suggesting directions for future research.

This cumulative thesis rests on the following three peer-reviewed publications, which are
described in more detail in their respective chapter (Chapters 3–5). They are listed in
the following, along with our contributions in the form of a CRediT statement [AOK19].

P1 Nikolaus Piccolotto, Markus Bögl, Theresia Gschwandtner, Christoph Muehlmann,
Klaus Nordhausen, Peter Filzmoser, Silvia Miksch: TBSSvis: Visual Analytics for
Temporal Blind Source Separation. Visual Informatics, vol. 6, no. 4, 2022. DOI:
10.1016/j.visinf.2022.10.002.
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• Contributed with: Conceptualization, Methodology, Software, Investigation,
Writing - Original Draft, Writing - Review & Editing, Visualization.

P2 Nikolaus Piccolotto, Markus Bögl, Christoph Muehlmann, Klaus Nordhausen,
Peter Filzmoser, Silvia Miksch: Visual Parameter Selection for Spatial Blind Source
Separation. Computer Graphics Forum, vol. 41, no. 3, 2022. DOI: 10.1111/cgf14530.

• Contributed with: Conceptualization, Methodology, Software, Investigation,
Writing - Original Draft, Writing - Review & Editing, Visualization.

P3 Nikolaus Piccolotto, Markus Bögl, Christoph Muehlmann, Klaus Nordhausen,
Peter Filzmoser, Johanna Schmidt, Silvia Miksch: Data Type Agnostic Visual
Sensitivity Analysis. IEEE Transactions on Visualization and Computer Graphics,
vol. 30, no. 1, 2024. DOI: 10.1109/TVCG.2023.3327203.

• Contributed with: Conceptualization, Methodology, Software, Investigation,
Writing - Original Draft, Writing - Review & Editing, Visualization.

Figure 1.17: Relation of our publications to the BSS data flow model in Figure 1.12.

In addition, we (co-)authored the following papers where we leveraged our particular
BSS-centered problem context to contribute to diverse topics such as visual parameter
space analysis (P5, P6), ensemble visualization (P6), guidance (P4), or temporal data
analysis (P7).

P4 Davide Ceneda, Natalia Andrienko, Gennady Andrienko, Theresia Gschwandtner,
Silvia Miksch, Nikolaus Piccolotto, Tobias Schreck, Marc Streit, Josef Suschnigg,
Christian Tominski: Guide Me in Analysis: A Framework for Guidance Designers.
Computer Graphics Forum, vol. 39, no. 6, 2020. DOI: 10.1111/cgf.14017.

• Contributed with: Resources.

P5 Nikolaus Piccolotto, Markus Bögl, Silvia Miksch: Visual Parameter Space
Exploration in Time and Space. Computer Graphics Forum, vol. 42, no. 6, 2023.
DOI: 10.1111/cgf.14785.

• Contributed with: Conceptualization, Methodology, Investigation, Writing -
Original Draft, Writing - Review & Editing, Visualization.
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P6 Nikolaus Piccolotto, Markus Bögl, Silvia Miksch: Multi-Ensemble Visual Analyt-
ics via Fuzzy Sets. EuroVis Workshop on Visual Analytics (EuroVA), 2023. DOI:
10.2312/eurova.20231092.

• Contributed with: Conceptualization, Methodology, Software, Investigation,
Writing - Original Draft, Writing - Review & Editing, Visualization.

P7 Claudia Capello, Nikolaus Piccolotto, Christoph Muehlmann, Markus Bögl,
Peter Filzmoser, Silvia Miksch, Klaus Nordhausen: Visual Interactive Parameter
Selection for Temporal Blind Source Separation. Accepted for publication in Journal
of Data Science, Statistics, and Visualisation.

• Contributed with: Conceptualization, Software, Writing - Original Draft,
Writing - Review & Editing, Visualization.

1.4 Outline

This section describes the structure of the remainder of the thesis, which is illustrated in
Figure 1.18 as a flow chart.

Figure 1.18: Structure of the thesis and relation between publications and research
questions.

In Chapter 2, we discuss the state of the art and open challenges in the visualization
literature related to BSS and our research questions. In particular, we cover visual
parameter space analysis (Visual Parameter Space Analysis (vPSA)), temporal and
spatial data visualization (including geovisual analytics), set visualization, ensemble
visualization, dimensionality reduction (DR), and guidance. We discuss the relation and
limitations of the visualization literature’s state of the art to BSS and formulate possible
future research directions for vPSA.

In Chapter 3, we present a VA prototype for TBSS supporting exploration of the tuning
parameter space and identified latent components. We provide a general, i.e., not specific
to temporal characteristics, task abstraction that likely applies to other latent variable
models and BSS for other data types. Novel VA approaches include, e.g., a set-aware
clustering method that we use to group latent components to provide an overview. The
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prototype was evaluated with usage scenarios on financial and healthcare data and
interviews with five BSS experts.

In Chapter 4, we move on to SBSS and focus on the problem of parameter optimization.
We suggest three tasks that a VA solution needs to support based on the user-centered
design with our collaborators and a domain expert in geochemistry. We present a VA
prototype implementing these tasks. The main features highlighted in the evaluation
were the guidance suggestions for the complex regionalization tuning parameter and a
direct manipulation interface for both tuning parameters. The evaluation included five
visualization experts, two SBSS experts, and the geochemistry expert.

In Chapter 5, we still tackle SBSS but now focus on sensitivity analysis. We aim to
use only dissimilarity measures based on the observation that neither SBSS inputs nor
outputs neatly conform to multivariate data. We suggest five required tasks and present
a VA prototype. We again included five visualization experts and two SBSS experts to
evaluate the prototype. We showed the transferability of our prototype by interviewing
an expert in microclimate simulations.

In Chapter 6, we discuss and reflect on how the publications presented in chapters 3–5
support our research questions (Section 6.1) and contributions (Section 6.2). Section 6.3
primarily focuses on the limitations of our research and possible gaps in the practical
application of our results.

In Chapter 7, we conclude the thesis with an outline of possible directions for future
research.
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CHAPTER 2
Related Work

As touched upon in Chapter 1, the most relevant related fields in visualization to BSS are
Visual Parameter Analysis, Temporal & Spatial Data Visualization, Set Visualization,
Ensemble Visualization, and Dimensionality Reduction. In the following sections, we will
introduce each of them and discuss their relation to BSS in more detail.

2.1 Visual Parameter Space Analysis

Parameter analysis is concerned with understanding the relation between the parameters
and outputs of a simulation model. Sedlmair et al. define it as:

“Parameter Space Analysis (PSA) is the systematic variation of model input
parameters, generating outputs for each combination of parameters, and
investigating the relation between parameter settings and corresponding
outputs.” [Sed+14, p. 2162]

Many state-of-the-art simulation models require multiple parameters to be set in order
to use them effectively. For example, it is highly interesting to domain experts if settings
of some parameters are less critical than of others, or whether some combination of
parameter settings leads to unrealistic outputs or even model failure. As it is often a-priori
unclear what exactly one is looking for, visualization proved to be very useful, thus
leading to vPSA. vPSA refers to PSA, supported by interactive visualizations. Santner
et al. [SWN03] distinguish between control, environmental, and model parameters.
Environmental parameters describe properties of the real world [LSN04], such as the
conductivity of transistors or the bone density of a patient. They are usually not under
the analyst’s control, which is why parameter analysis tends to focus on control and
model parameters. The difference between the two is that model parameters, such as
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grid sizes, are necessary for numerical purposes of the model but usually hidden during
model usage. Nevertheless, model parameters impact the model output and are thus just
as interesting to investigate as control parameters [Bis+17; Wan+17]. In the following
we refer to both of them as “parameters.”

Data Flow Model. Sedlmair et al. [Sed+14] surveyed the field of vPSA and identified
a common data flow model (Figure 2.1). The model is viewed as a function mapping
some input onto some output. Notable is the “surrogate model,” which is a less accurate
but faster version of the original model, e.g., a trained neural network [Haz+20] or
linear regression [Mat+14]. It is derived from outputs of the original model and its
input parameters. While the predicted outputs of the surrogate model may not be
entirely accurate, it enables interactive visual analysis when the original model is too
computationally expensive. The reduced accuracy is usually not seen as an issue, as
uncertainty quantification techniques may express the surrogate model’s confidence in its
prediction or, as a last resort, one could always revert to the original model.

Figure 2.1: Data Flow Model for vPSA. Image: [Sed+14, Fig. 6] © 2014 IEEE

Analytic Tasks. Further, the authors [Sed+14] distilled six common analytic tasks
pertaining to parameters and ouputs of a model: Optimization, sensitivity, uncertainty,
fitting, outliers, and partitioning. In parameter optimization, analysists seek the
parameter settings that lead to the “best” output according to some definition. If
objective functions can be formulated, numerical optimization, like (integer) linear
programming, is applicable. Having a human in the loop can help domain experts
consider, maybe even accept, such approaches [Liu+18; Liu+21]. Sensitivity analysis
asks “what ranges/variations to expect with changes of input” [Sed+14, p. 2166]. Clearly,
more attention must be paid during model use to parameters to which the output is highly
dependent. If parameters and output are, or can be expressed as, multivariate data, a
multitude of numerical sensitivity analysis techniques are available [Ham94; IL15; BP16].
Sedlmair et al. [Sed+14] mention that they found sensitivity analysis to often have
cross-cutting concerns, which is also true for BSS: A method is expected to be more likely
to be the “true” solution if it comes from a stable parameter subspace. Uncertainty
analysis is necessary when one seeks to understand the reliability of model outputs: How
far off were, e.g., precipitation predictions compared to what was measured? Fitting
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turns the data flow model upside down, in a way, because it asks about the inverse
relationship: Which parameters would yield a given output? This is sometimes referred
to as “inverse design” [Cof+13] when parameter settings are optimized by sculpting the
desired output directly. Partitioning is akin to an overview task, as it asks about all
possible model behaviors. Partitioning is usually only achievable with extensive sampling
of parameter settings. Finally, outliers seeks to find special outputs that do not behave
like the others. These may be model failures or extreme but still valid outputs.

Navigation Strategies. Sedlmair et al. [Sed+14] also suggest four parameter space
navigation strategies that are commonly employed. Informed trial-and-error is the
default: A loop in which a parameter setting is manually selected, the output inspected,
and the model re-run with modified parameter settings. Large interruption costs between
the second and third step are the main problem of the approach. In local-to-global
navigation, the analyst starts with one output and explores alternative outputs from
there step-by-step in a systematic fashion. E.g., by navigating from a biopsy device
design (input) with some specific stress on its surface (output) to another design that
minimizes stress on a particular part on the surface [Cof+13]. On the other hand, in
global-to-local approaches, the analyst starts with an overview of all outputs and drills
down into details from there. Finally, the analyst influences the simulation as it runs in
steering approaches. The simulations may calculate water volume during a flood and the
analyst’s interventions be barriers placed at specific points in time [Was+10]. Another
example are interactive genetic optimization techniques that ask for user preference every
couple of hundred generations [Mar13].

While the survey by Sedlmair et al. [Sed+14] is a great resource for visualization
designers, it does, aside from parameter space navigation strategies, not discuss how
vPSA approaches employ visualizations and interactions to achieve their goal. Further,
returning to the focus of this thesis, it does not discuss how time and space are handled.
BSS parameters relate to time and space, as do the outputs, which are sets of time series
or maps. The accepted principle in visualization literature is that time and space have
unique characteristics, e.g., seasonal cycles in time or Tobler’s law in space (“everything
is related to everything else, but near things are more related than distant things” [Tob70,
p. 236]). Therefore, time and space should be visualized as such and may not be treated as
some other numeric variables. The authors [Sed+14] distinguish between inputs/outputs
as multivariate/multidimensional and “complex objects” (i.e., something semantically
more meaningful than a few numbers), but temporal/spatial data could fall into either
category. We will discuss these matters in the next section.
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2.1.1 Visualizations & Interactions in Visual Parameter Space
Analysis of Temporal and Spatial Data

This subsection is based on:

Nikolaus Piccolotto, Markus Bögl, Silvia Miksch. Visual Parameter Space Exploration in Time
and Space. Computer Graphics Forum, vol. 42, no. 6, 2023. DOI: 10.1111/cgf.14785.

In [PBM23b] we surveyed interactive visualizations for vPSA and identified five common
themes (Figure 2.2) describing how they work towards solving PSA tasks. Consider a time
series segmentation model [Ber+18; EST20]. The model inputs are a multivariate time
series, e.g., motion sensor data, and some scalar parameters concering the segmentation
process. The model produces a labeled time series, e.g., activities. Analysts may look for
a reasonable labeling, i.e., one that is not overly sensitive to particular parameter set-
tings. As a first step, analysts must identify interesting parameter settings to investigate
(Finding Parameter Settings). In this case, the vPSA system computes segmentations
for a uniformly random sampling of the parameter space. The obtained parameter/output
pairs are then visualized to support the intended analysis (Input/Output Visualiza-
tion). E.g., parameters and outputs may be shown in a tabular visualization using
grayscale color for parameter values and color hue for labels. Others may depict derived
data, like how much changes in a parameter correlate with changes in a label’s occurrence.
The analyst then interacts with the visualizations according to current information needs
(Data Case Organization), e.g., by zooming into a temporal interval of interest, sorting
the table by a column, or defining new derived attributes. In doing so, the analyst
formulates hypotheses from gained insights [Sac+14], e.g., what a reasonable parameter
subspace would be, and acts upon them to verify. This verification may entail changing
how the model itself behaves ((Surrogate) Model Tuning) or repeating the analysis
on a smaller parameter subspace. The analyst keeps track of sensible candidates via
bookmarking or saving the parameter settings to a file (Provenance).

Terminology and Glyphs. A model transforms some input to some output. It can be
an existing algorithm, a faster but less accurate “surrogate” to some existing algorithm
(usually the case in connection with simulations), or a set of building blocks that perform a
specific task, like a processing pipeline. We distinguish between three types of data cases:
Static inputs (often called input data), dynamic inputs (parameters), and output of a
model. The difference between static and dynamic inputs is that the latter take on varying
settings to complete a parameter space analysis task [Sed+14], while the other remains
static throughout the analysis. We further distinguish between three data characteristics:
Spatial (S), temporal (T), and abstract (A) data. Spatial data refers to spatial primitives,
like points or volumes. Temporal data refers to temporal primitives, like instants or
intervals, and abstract data to tensors. The three characteristics are denoted by glyphs
comprised of three hexagons: S , T , and A . Spatially and temporally varying data
arises by combining the three characteristics, e.g., a multivariate time series has both
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Figure 2.2: Major themes in vPSA approaches and their relation to the Data Flow Model
by Sedlmair et al. [Sed+14] (top left) and the InfoVis pipeline by Card et al. [CMS99]
(top right).

temporal and abstract features (AT ) as an associated vector of variables exists for each
time instant. Abstract, spatial, and temporal characteristics amount to seven possible
combinations.

Method. We chose three seed papers for our literature search: Another survey of
visual parameter analysis [Sed+14], a survey of data processing pipelines [vLFR17], and
a popular example of visual parameter analysis [Tor+11]. We build a pool of candidate
papers by conducting forward and backward search starting from the seed papers. In the
end, we had 526 papers to consider. 103 papers we considered too old (published before
2010) or duplicates of others. Finally, we excluded 322 more papers as they were not about
PSA, did not feature interactive visualizations, or did not consider temporal or spatial
parameters or outputs. From the remaining 101 papers, we randomly selected 57 to carry
out Reflexive Thematic Analysis (RTA) [BC06; BC19; BC21a; BC21b]. RTA is a method
to develop themes from qualitative datasets, such as interviews, videos, or research
papers. In contrast to codebook or coding reliability approaches, RTA embraces that the
researcher develops themes from the dataset and that they do not exist independently.
RTA [BC06; BC19] devises quality control steps in its process, which we followed. The
remaining 44 papers were used as a “test set,” like in a machine learning context, to verify
the applicability of developed themes. As our themes are rather general, we encountered
no issues in that process.

In the following sections we briefly introduce and present the mentioned themes.

Finding Parameter Settings

This theme considers interactions that lead to new (i.e., not previously analyzed) param-
eter settings and outputs added to the underlying data table. We distinguish broadly
how those parameter settings are obtained: Manually, either constrained to a particular
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parameter subspace or not, and automatically, either supervised or unsupervised. Fig-
ure 2.3 shows a S parameter (polygon) and illustrates the Finding Parameter Settings
sub-themes. We can imagine an algorithm that evaluates the roundness of the shape
as our model. With Manual/Unconstrained, the parameter may be edited at will, thus
taking any setting. As a result, any shape is possible. With Manual/Constrained, the
parameter is restricted to a subspace, in this case, a ring: The currently edited vertex may
be moved anywhere inside the subspace. Automatic techniques obtain parameter settings
without or with little user interaction. Unsupervised approaches, like random sampling,
traverse the parameter space independent of the output. Consequently, they may obtain
very un-round shapes. On the other hand, output quality (roundness) guides supervised
approaches’ parameter space traversal. In our example, they may, e.g., only visit convex
shapes. Regarding parameter space analysis tasks, we find that Manual/Constrained and
Automatic/Supervised are commonly used to support optimization tasks, while the other
two sub-themes do not have a clear preference.

Figure 2.3: Finding Parameter Settings sub-themes.

Manual / Unconstrained. We classified papers to support unconstrained manual
input when the user can enter any parameter setting supported by the model. Regarding
how manual interactions with parameter spaces work, we can distinguish between indirect
and direct manipulation. Direct manipulation, as defined by Shneiderman [Shn83], is
characterized by i) continuous representations of objects of interest, ii) physical actions
instead of textual commands, and iii) rapid, incremental, and reversible actions. An
example of direct manipulation of an abstract parameter can be found in interactive
PCPs [MW20], while indirect manipulation would constitute every input method using
form controls [Rup+14]. Direct manipulation of a S parameter would be to directly
edit the spatial representation, e.g., by growing/shrinking parts of a biopsy device with
drag and drop (Figure 2.4). Indirect manipulation of such a parameter may happen
through sliders for a parametric representation of it [Sch+17]. While it is widely agreed
that direct manipulation is superior to indirect manipulation, the latter can still be
very effective if the system is interactive enough [KP10; He+20]. Contrary to the
indirect manipulation approaches, which work with abstract parameters, parameters
often have a temporal/spatial component in the direct manipulation group. They are
manipulated in any way that makes sense for the application domain: Wing shapes
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are drawn [Ume+14], as are walls [Ste+17] or shadows [Lin+13], time windows resized
[Bor+17], and furniture is moved/rotated [Mer+11], through mouse operations on the
visual representations. Novel input methods and modalities were explored sometimes,
too. Kazi et al. [Kaz+17] explored how generative modeling can be used to support the
design stage. Within their system, DreamSketch, the designer sketches a design problem,
such as a load-bearing wall mount, using pen and tablet. The system then finds optimal
solutions for varying combinations of design variables, which can be browsed within the
sketch. Mohiuddi and Woodbury [MW20] explored a direct manipulation paradigm for a
parametric representation of a S parameter (building design in architecture). Referring
to Balling [Bal99], they argue that “designers prefer direct engagement and manual
exploration” over automated sampling [MW20, LBW289, Page 4]. Hence, they propose
novel interaction techniques for PCPs, such as sketching polylines, parallel editing, and
quick generation of alternatives with operators, such as a cartesian product.

Figure 2.4: Forward and inverse design with direct manipulation of a canule
(S parameter); stress on surface (AS output) is shown embedded to the design. Im-
age: [Cof+13, Fig. 1] © 2013 IEEE

Manual / Constrained. We classified papers as supporting constrained manual input
when entering a parameter setting is still manual, but the system does not allow the
user to enter or develop arbitrary parameter settings, even though the model would
support them. The system often expects the available parameter subspace to lead to
higher-quality outputs. However, the restriction may also be a UI design decision to
grapple with high-dimensional parameter spaces. As with all input modes, this can be
optional and in addition to other modes available in the system. We further distinguish
four approaches. Restrict to Subspace occurs when the system allows free selection
only in a continuous parameter subspace. E.g., Brunhart-Lupo et al. [Bru+16] restricted
A parameter selection to two dimensions with a “Parallel Planes” visualization in virtual
reality. With Pick from Suggestions, the system suggests discrete parameter settings,
i.e., points in the available subspace. These suggestions can be accepted, usually replacing
the current setting. Suggestions were used in interior design [Mer+11; Wal+20], shelf
design [UIM12], image processing [KSI14], robot design [Des+19], or graphic design
[OAH15; Day+20]. Steer by Rating works by shrinking the available subspace step by
step until it is so small that it can be considered a point, i.e., the desired solution. E.g.,
Koyama et al. proposed repeatedly searching along lines [Koy+17] and on planes [KSG20]
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via selection from galleries. Finally, with Automatically Adapt Partial Solution,
the user provides the parameter subspace via a partial solution, and the system adapts it
according to some objective. Liu et al. [Liu+21] recommend this strategy as part of their
design guidelines for interactive optimization systems. Apart from their work, we found
it, e.g., in systems using sliders to select parameter settings, where the user may lock
slider values and let the system automatically set free sliders [KSI14; Yum+15; Des+19].

Input/Output Visualization

Many PSA tasks ask about a relation between parameters and output. Thus, an important
high-level goal in vPSA is to reconcile and compare the parameter and output spaces of the
model and this theme explores how it can be supported with visualizations (Figure 2.5).

Figure 2.5: Input/Output Visualization sub-themes.

Juxtaposition. Juxtaposition refers to separate input and output visualizations, which
are shown side-by-side, and any layout to do so is possible [JE12]. It allows special-
ized visualizations of the respective data type, e.g., a parallel coordinates plot for the
A parameter and a gallery of the resulting S 3D models [AE20], or 2D embeddings
of A parameters and AT time series [Orb+19]. Involved views are often conceptually
linked through the Gestalt principles of common fate (when the analyst manipulates one
view, the other changes immediately as well), or similarity (selected data cases highlighted
in the same fashion everywhere). Because respective visualizations can be positioned
anywhere and little shared visual cues are necessary, this strategy is flexible and can be
applied to any data type combination. An example is by Zaman et al. [Zam+15], who
propose a user interface for a geometry generator, i.e., the A parameter is a graph of
parameterized drawing operations, and the S output is a vector image. Juxtaposing
the graph editor and the output allows specialized visualizations for both. The desired
vector image (optimization task) is created via indirect manipulation.
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Superposition. Input and output visualizations are overlaid onto each other with
Superposition: They occupy the same display area and share their coordinate system.
While this allows detailed comparisons, the disadvantage of this strategy is that it only
works with visual marks of the same domain, e.g., lines depicting time series in the same
interval or trajectories referencing the same geographical space. An example is found in
brachytherapy, where doctors place radiation seeds, which are injected into the patient’s
body to control tumors, on a matrix grid. By superpositioning seed amount and location
(AS parameter), organs at risk (static S input), and radiation dose (AS output),
doctors can optimize radiation dose.

Embedding. We refer to Embedding in the sense of “making an integral part of
something.” There is only one visualization and one coordinate system. Input and
output are combined into the same visualization via mapping to visual channels. Hence,
Embedding may technically be considered not a composition of two visualizations but
rather the combination into one. Examples include scatterplots that show a parameter on
one axis and a (possibly derived) output on the other [FMH16], parameters and outputs
as axes in a parallel coordinates plot [Ste+13], color-coding output quality in a tilemap
of two parameters [Ami+10] or on 3D shapes [Dor+15]. Embedding can support, e.g.,
sensitivity analysis when parameter and output are combined into visualizations that are
suited to this type, e.g., scatterplots [Mat+18], parallel coordinates plots [Ste+13], or
a combination of the latter with cobweb charts [Rai+14]. Uncertainty analysis can be
carried out when multiple outputs are aggregated prior to Embedding. In the context
of flood simulations, this was useful to visualize, e.g., the highest water level associated
with any TS parameter setting (such as breach location) at any time step. From the
embedded visualization, it can be seen which areas are flooded or not (colored or gray)
and how badly (green-red colormap).

Alignment. Alignment refers to situations where inputs and outputs are visualized in
separate visualizations. Hence their visualizations’ coordinate systems are separate and
do not overlap. In contrast to Juxtaposition and Integration, the visualizations cannot
be rearranged at will. Examples of Alignment include spreadsheet-like visualizations
(data for a row is horizontally aligned) or grid-like visualizations. Visualizations in the
Alignment theme have similarities to pixel-oriented visualizations [Kei00] in that the
individual visualizations can be, but are not necessarily, quite simple. The image that
emerges by aligning many of those visualizations is more than the sum of its parts. We
found Alignment to support diverse parameter space analysis tasks. E.g., when temporal
outputs are sorted vertically by parameter settings, dependencies and correlations between
parameter settings and output can be highlighted (sensitivity analysis). Of course, the
exact sorting order must be flexible and changeable by the analyst.

Sequential Superposition. With Sequential Superposition, input and output visual-
izations have separate coordinate systems. They do not occupy the same display area,
but the output visualization shows a single output that is rapidly exchanged over time
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after user interaction in the input visualization. While this theme could be seen as Jux-
taposition, we argue that the high level of interactivity makes this approach qualitatively
different. The user controls the emerging movie, enabling trial & error, probing, and
“what if” analysis. In other words, by quickly experimenting with varying parameter
settings and observing the model output, vPSA becomes possible. The controls are very
often juxtaposed sliders, but more sophisticated visualizations are possible [Ume+14;
Sch+18]. Sequential Superposition enabled mainly optimization and sensitivity tasks.
Rapid exploration of the output space allows for quickly finding relevant parameter
subspaces, which can be further refined. On the other hand, the influence on the output
can be determined by varying one parameter and observing the output while keeping
other parameters fixed. He et al. [He+20] developed a surrogate model for a computa-
tionally expensive ocean simulation by training a neural network to produce the desired
visualization image directly. Analysts can freely change simulation, visual mapping, and
view parameters on the left while the respective volume visualization is shown on the
right. Another example in the same fashion, but without sliders, can be seen in the work
by Umetani et al. [Ume+14], where a direct manipulation wing design interface is used
instead.

Overloading. With Overloading, input and output visualizations overlap in the display
area, but their coordinate systems differ. The position of the overlaid coordinate system is
irrelevant, i.e., positions, distances, and sizes in one visualization do not directly translate
to the other. An example is overlaying glyphs [RSG21]. While the space depicted in the
overlaid graphics is the same as in the selected region of interest underneath, the offset
and repetition make the approach different from Superposition. Malik et al. [MHG10],
who show detected edges in scanned images (AS output), obtained various scanning
configurations (A parameter). Seeing multiple of those in the same view enables both
optimization when the analyst can pick the setting with the “best” edges, and sensitivity,
as the analyst can investigate the impact of a few settings of one parameter on the
detected edges in the selected region of interest.

Integration. Integration refers to Juxtaposition, i.e., separate non-overlapping input
and output visualizations, but with explicit links between marks of the two visualizations
[JE12]. Only Weissenböck et al. [Wei+16] and Yumer et al. [Yum+15] used this approach.
In the former case, a trapezoid connects the respective A parameter and A derived
feature ranges of histograms. Thus the trapezoidal annotation’s shape hints at the
sensitivity of the parameter. The integrating links connect S outputs to a point in the
AS parameter space of the latter example, thus enabling partitioning.

Explicit Encoding. Explicit Encoding refers to only one coordinate system and visu-
alization showing the difference between inputs and outputs with the Explicit Encoding
idiom [Gle+11]. As specialized comparison visualizations were not that common in the
papers we surveyed, this category also remains somewhat small. Explicit Encoding was
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mostly used with time series processing, highlighting where original (input) and output
time series differ. In that context, the idiom usually supports an optimization task.

Nesting. Nesting means that input and output have separate visualizations and co-
ordinate systems, they overlap in the display area, and the positioning of the overlaid
coordinate system matters. The overlaid coordinate systems are nested into the marks of
the “host” visualization. Hence, like Overloading, but position matters. Like Embedding,
but marks are complete visualizations with their own coordinate system. Like Alignment,
but there is a proper host visualization and not only imagined coordinate axes. Working
with time series segmentations, Eichner et al. [EST20] added small correlation matrices
into the marks of a visualization depicting different A parameter ranges. In doing so, it
becomes visible which ranges of a given parameter influence which features in the output,
e.g., the number of segments with a particular label (sensitivity analysis).

Data Case Organization

Many systems work with multiple parameter/output pairs with temporal/spatial charac-
teristics. A clear challenge to effective data analysis is the amount and complexity of
the involved data. Hence, vPSA systems use varying strategies to reduce the amount
and complexity of the data the analyst has to reason about. We found five strategies
to achieve that (Figure 2.6), which, considering they resemble buildings blocks of an
SQL SELECT statement, can be seen as basic querying operations. Their outcome may
be visualized directly, or combined with each other to arrive at sophisticated concepts.
E.g., we could obtain the accuracy of a model in a given spatial region of the output
by i) filtering reference and output data to the spatial region (focusing), ii) computing
the difference between reference and outputs (derivation), iii) computing the average of
differences (aggregation). If this process is repeated for multiple regions, regions may be
ranked (sorting) or clustered (grouping) by accuracy, thus supporting, e.g., uncertainty
analysis. Other important scalars obtained by combining these operations are sensitivity
indices, of which several [Ham94; Bor07; GI12] exist.

Figure 2.6: Themes for Data Case Organization.

Focusing. This theme collects interactions where the analyst focuses on a subset of
data cases through selection/brushing (item-based) or filtering (attribute-based) or on
a region/interval of interest through navigation in time or space. In other words, they
decide to either look at fewer data cases or less information about a single data case
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(or both). By selection, individual data cases are marked as interesting. When relevant
abstract attribute ranges are defined, it is referred to as filtering or attribute-based
selection. Finally, space and time often need to be navigated independently of attribute
values. Overview+detail visualizations [CKB09] can be used to maintain the broader
context of the current focal region. Focusing on subsets of data cases or time/space
is, on the one hand, necessary because display resolution and size are limited. On the
other hand, a typical parameter space analysis process requires Focusing interactions.
Input/output visualizations display parameters and outputs while highlighting relations
relevant to the required parameter space analysis task, e.g., optimization or sensitivity
analysis. To go from such findings to insights and knowledge [Sac+14], analysts have to,
e.g., inspect relevant data in more detail or find related data cases. Selection is often
performed by clicking on a data case in a specific visualization, which could, e.g., be a
ranking [Was+14; Sor+16] or a time-varying vector field [Sag+17]. Selecting multiple
data cases can be achieved by grouping them first and then allowing selection on the group
representatives [BM10; Beh+14; FMH16], or by classical multiple selection tools, like a
lasso [Was+10]. In systems with multiple linked views, this functionality is provided by
brushing and linking. The inverse operation to selection is available in some works, where
the user can exclude data cases from the analysis [OBJ16; Yañ+17; Swe+20]. Picking out
individual data cases is cumbersome or infeasible when there are many. In such a case, a
solution is to define a filter on their attributes. This approach is ubiquitous with systems
that employ multiple linked views. An often-used example [Mat+10; Mat+13; Mat+14;
Mat+17; Cib+17] of those is ComVis [Mat+08], which allows flexible brushing and
linking in any view. Such systems allow analysts to filter in either parameter or output
space and see the effect on the other. Parallel coordinates and related visualizations are
especially common for this task [Ste+13; Cof+13; Beh+14; Dor+15; Orb+19; RPI19;
AE20], possibly after feature derivation, but so are histograms and scatterplots. In
a multiple-linked view system, InfoVis can be combined with spatial/temporal data.
E.g., Ribičić et al. [Rib+13] use them to present derived features from spatio-temporal
flood simulations. After the analyst selects data cases by brushing, related frames from
multiple simulations are highlighted in a World Lines view [Was+10]. Analysts are
provided sculpturing-inspired tools that allow them to filter 3D models based on spatial
features in the DreamLens system [Mat+18]. E.g., the “chisel” tool defines a line in 3D
and excludes any mesh that intersects that line. With temporal data, it is natural that
analysts focus on a subset of the time axis because temporal data may span a long
interval or have high resolution. This task is often solved by zooming into a smaller
contiguous interval [Ber+19]. When there is additionally a spatial dimension in the data,
it may be possible to either look at a summary of all temporal data in space (and vice
versa) or to inspect single time steps in more detail [Bis+17]. The latter can be simplified
by segmenting the time series and showing representatives [BM10; Bry+15]. We can
look at the dimensionality of the part of interest to further categorize focusing in space
beyond geometric view transformations such as pan/zoom or rotation. There are points,
lines, surfaces, areas, and volumes. Points of interest occur, e.g., in particle simulations
[GT16; Sag+17], where analysts may place seed points for particles and inspect their
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trajectories, but also in lighting design, where designers place glare probes in a room
[Wal+20]. Schultz et al. [SK13] filter vertices of a 3D mesh by any existing or derived
scalar value at a vertex by selecting thresholds in a density plot. Areas of interest, of
course, naturally appear with two-dimensional spatial data. E.g., in image segmentation,
Pretorius et al. [PZR15] allow to brush a subset of reference images so that analysts
may focus on known problematic regions. Areas in 3D are surfaces and classified into
usage types (e.g., work, leisure) in the context of lighting design [Sor+16; Wal+20] to
verify legally prescribed light conditions. For Hazarika et al. [Haz+20], the space is a
circle (an idealized yeast cell), and hence the interesting part is a line around it. Analysts
may select a portion of that circle by brushing and querying for parameter settings that
maximize/minimize the yeast simulation response there. Axis-aligned cubes of interest
are used by Amirkhanov et al. [Ami+10] to mark features in a 3D scan.

Derivation. We refer to Derivation when new, simpler information is generated from a
single data case. Usually, this data case is the output and we call the result a feature. We
classify information that does not pertain to a single element but a population thereof
(e.g., central elements, distributions) as Aggregation. Derived features are often scalars
that quantify something of interest, such as how well an output matches a “ground truth”
reference. Derived features may also preserve the spatial/temporal dimension. E.g.,
when boundaries of homogeneous regions in an image are of interest, those might be
found with an edge detection algorithm. We distinguish between the type of the derived
data (abstract, time, space) and what it measures (output quality or output feature).
Derived features in the Scalars Quantifying Output Features category quantify
domain-specific features in the output and produce one or more scalar values (A ). These
features are various. From the visual appearance of 3D models (S output) [Mat+18]
to how far sandbags (ATS parameter) were swept by a flood (TS output) from their
initial position [Rib+13]. Energy use can be derived from a building design (S output)
[AE20], and the amount or length of labels from a time series segmentation (Figure 2.7).
Well-known summary statistics are also used, like minimum/maximum value of a time
series [Mat+10; Mat+14]. The other group of scalars (Scalars Quantifying Output
Quality) quantifies the output quality. If no inherent quality metric exists, e.g., the
number of intersecting triangles of a 3D mesh, outputs can be compared to a reference
(“ground truth”). The latter can come, e.g., from human experts [Tor+11], from actual
physical measurements, like the arrival time and speed on earth of a coronal mass ejection
[Boc+15], or from government regulations, like lighting conditions in a work environment
[Wal+20]. The former group of scalars depends on the application domain, and proper
derivation functions have been identified for image segmentations [FMH16], porosity
analysis in materials [Wei+16], or 3D meshes [Beh+14]. When the aforementioned scalars
are derived per time step of a parameter/output with temporal characteristics, one derives
AT data (To Time+Abstract Data). They fall into the same two categories, i.e.,
they quantify either output quality or characteristics. Uncertainty in time was quantified
by Biswas et al. [Bis+17] to show how a spatio-temporal model is influenced by grid
size (a model parameter) and by Bernard et al. [Ber+19] to highlight which parts of
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a multivariate time series change significantly by a preprocessing algorithm. Similarly,
Röhlig et al. [Röh+15] and Luboschik et al. [Lub+12] show the fit to a reference over
time. Many features that indicate spatial and group behavior in the context of chaotic
movement patterns in biology were plotted over time in another work by Luboschik et al.
[Lub+15]. Derived features may also preserve the spatial dimension, producing AS data
(To Space+Abstract Data). Malik et al. [MHG10] used edge detection to highlight
differences between many 3D X-ray computed tomography images. Sagristà et al. [SJS20]
detect ridges in a finite-time Lyapunov exponent field. Obermaier et al. [OBJ16] derive
metrics about temporal and spatial trend characteristics.

Figure 2.7: Example for Derivation. Parallel Coordinates Plot showing correlations
(Y position) between a A parameter (line) and the number of segments with a given
label (axes), a derived feature from the AT output of a time series segmentation model.
It is visible that the Obs parameter influences the number of labeled segments most
(sensitivity). Image: [EST20, Fig. 4] License: CC-BY

Aggregation. Multiple data cases are aggregated in one way or another to reveal
information related to statistical distributions, e.g., central items, outliers, or frequency
of items. Data characteristics of data cases are retained, i.e., aggregating many time
series yields a time series, and aggregating scalars yields a scalar. Classic examples
for A data are summary statistics, like mean or standard deviation, histograms, box
plots. Distributions in time and/or space are also often of interest. Naturally, as this
section is about summarizing spatial and temporal data, overlap with approaches used
in ensemble visualization [Wan+19] is expected. Focusing on the common behavior
of multiple elements while preserving data characteristics sets this sub-theme apart
from Derivation. We distinguish between characteristics of aggregated data. Abstract
data often arises as part of feature derivation. Matković et al. [Mat+10] summarize
many time series (AT ) by showing a histogram of a A user-defined feature (minimum,
average, or maximum value). Sagristà et al. [SJS20] summarize a finite-time Lyapunov
exponent (FTLE) field by counting ridges (A feature), which are then aggregated
by summary statistics. Unger et al. [Ung+12] use the average goodness-of-fit of a
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geoscientific simulation model to uncertain ground truth to validate the model. In Space,
Landesberger et al. [vLan+13] show a 2D distribution plot of 3D meshes (S static
input) so that the analyst may choose between a gaussian and non-gaussian distribution
(a parameter of the 3D segmentation algorithm). To summarize stochastic 3D packings of
molecules (S ), Schwarzl et al. [Sch+19] use a density plot from an orthogonal direction.
In Space+Abstract, Beham et al. [Beh+14], as well as Fröhler et al. [FMH16],
aggregate multiple image segmentations (AS output) to a single visualization image by
highlighting where segmentations disagree. Cibulski et al. [Cib+17] summarize a set of
surfaces (AS output) with 3D boxplots. Raidou et al. [Rai+16] show uncertain regions
of tumor treatment by showing the variability of recommended radiation dosage from
multiple parametrizations of a tumor control probability model (AS output). Malik et
al. [MHG10] perform edge detection on scanned images, yielding a AS feature, then
align histograms to the side of a scan that shows how many images have an edge in that
row/column but not others. In Time+Abstract, Ribés et al. [RPI19] find quantile
time series by density analysis in principal component space of many AT simulation
outputs. Bernard et al. [Ber+16] highlight the uncertain parts of multiple time series
segmentations (AT ) by showing the probability of class labels over time with line graphs.
In Space+Time, Rojo et al. [RGG18] employ density volumes and isosurfaces to show
the distribution of particle trajectories (TS output) in time and space By separating
the density volumes further using color, the influence of the particle size (A parameter)
becomes visible (partitioning, sensitivity tasks). Sagristà et al. [Sag+17] use phase-space
FTLE maps to show the variance of particle trajectories (TS output) depending on
the initial position or initial velocity. To analyze many flood simulations (TS output),
Ribičić et al. [Rib+13] propose an aggregation pipeline that involves extraction, grouping,
aggregation, and embedding.

Sorting. Another approach to reducing the amount of data cases is to rank them
according to some logic. As position in space is the most accurate visual variable, sorting
parameters/outputs allows organizing complex data quickly and aids understanding
as the analyst only needs to inspect the top few results. When sorted data cases are
presented as visual objects, e.g., glyphs, complex patterns may become apparent. We
distinguish sorting by scalars (one-dimensional A data) and complex (i.e., everything
else) attributes.

Producing a 1D ordering of objects is known as seriation [Lii10]. The simplest case is
a 1D seriation of a scalar, which we can sort. Arrangements along a single dimension
include lists, rankings, and so on, but also spreadsheets sorted by one column. In the
context of flood simulations, Waser et al. used this technique to sort parallel universes
based on a derived AT simulation state [Was+10]. Approaches making use of design
galleries also often allow sorting those based on a user-defined criterion, like the value of
a derived feature [Dan+15; Mat+18]. In interactive optimization, Liu et al. [Liu+21]
recommend sorting obtained solutions by the objective function’s value. Sorting by more
complex data than scalars was also often used to organize data cases. E.g., a user-defined
weighted sum of a multidimensional A attribute produces a scalar again. Waser et al.
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ranked protection plans (ATS parameter) by a weighted sum of cost, protection, and
construction time [Was+14]. Sorger et al. [Sor+16] ranked lighted scenes (AS output)
by how close lighting conditions are to legally prescribed values on surfaces of interest.
With spreadsheet-based visualizations, parameters and outputs (or derived features) are
represented as columns and data cases as rows. Users may then sort all rows or subsets by
one or more columns. As temporal/spatial data make up one column, different similarity
metrics and sorting algorithms, e.g., optimal leaf ordering [HHB08], can be used to obtain
an ordering. Spreadsheet-based approaches have been mostly used with AT outputs
and A parameters [Lub+12; Lub+14; Röh+15; Ber+18; EST20], but also with derived
features from spatial data [PZR15], or spatio-temporal data [Lub+15].

Grouping. Separating data cases into coherent groups is another way to organize a
large body of data. This task can be achieved automatically through clustering algorithms
if similarity information of data cases is available. It may also make sense to let the user
decide on the particular groups, which are then formed based on the current analysis
goal. E.g., authors often used Grouping to partition the output space and, by visualizing
parameter settings per cluster, showing their sensitivity. We distinguish further by which
characteristics data cases are grouped.

A hierarchy of A (Abstract) parameter settings is used in Paramorama [Pre+11],
allowing analysts to quickly step through relevant subspaces (subtrees). The parameter
space of Poco et al. is a binary vector (A ). Hence, analysts may group the AT outputs
by whether a Boolean parameter is set or not [Poc+14]. Different groups of data
cases appear automatically in the work by Bao et al. [Bao+13] as the dimensionality of
underlying parameter subspaces makes it necessary to present data cases separately. When
A features are derived from outputs, grouping by abstract data may also involve outputs
[OBJ16; Bis+17]. Notable is Schulz et al. [Sch+18] who, in parametric engineering
design, achieved a partitioning of solutions in performance space (stress, mass, heat)
where groups contain Pareto-optimal designs. Abuzuraiq & Erhan [AE20] use hierarchical
clustering both on the A parameter space and on the resulting 3D shape (Space,
S ) of the building in the context of generative architecture. Similarly, Beham et al.
[Beh+14] group 3D meshes (S output of a generative model) and display emerging
clusters in a A parameter space visualization (PCP). Fröhler et al. [FMH16] group image
segmentations (AS output) hierarchically and visualize their disagreement. Clusters
may be selected, which updates linked A parameter visualizations. In parametric
design, Woodbury et al. [Woo+17] allows analysts to group S data cases (3D models)
into collections, which may be automatically expanded by combining A parameter
settings. Ribičić et al. [Rib+13], in their proposed pipeline to visualize data from
multiple TS flood simulations (Space+Time), group data in a domain-specific way
and distinguish between objects (buildings), fields (water) and instances (sandbags).
Information about group members is subsequently aggregated and visualized, e.g., by
Embedding. Working in visual effects design, Bruckner et al. [BM10] group TS outputs
into coherent temporal segments based on frame similarity. The segments are then
depicted in a timeline.
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(Surrogate) Model Tuning

In some vPSA systems found in the literature, it is possible to interact with the (actual
or surrogate) model itself. In some applications, this is necessary because building a
suitable model is part of the parameter optimization task. An example is pipelines, a
common concept in image [Wei+16] or time series processing [Ber+19]. The analyst
needs to find appropriate parameter settings and choose the required steps (e.g., outlier
removal or smoothing), their order, and which algorithm to use. We can distinguish the
operation performed on the model: Editing and inspecting. The former alters the model,
while the latter collects and presents its internal information.

Editing. Editing refers to the previous example of building a pipeline or a surrogate
model inside the system as part of the exploration process. The latter was done in two
works by Matković et al. [Mat+14; Mat+17], where the analyst defines a regression
model on a data subset. This model was then further used to estimate and sample
a A parameter subspace [Mat+14]. As for pipelines, we found examples for image
processing [vLan+13; Wei+16] and time series processing [Ber+12; Ber+19]. Matković
et al. [Mat+10], in the context of an electronic unit injector simulation, allow the
analyst to build a schematic model of the individual involved components. Bryan et al.
[Bry+15] support analysts in defining a suitable emulator for a complex simulation with
ATS output. Finally, Dang et al. [Dan+15] assist an analyst in defining a probability
density function for a shape grammar, in which, after user interactions, they automatically
update probabilities of individual rules and the set of rules themselves.

Inspecting. Inspecting, on the other hand, exposes the internals of the surrogate
model to the user. While inspecting model internals can be required to build a proper
surrogate, it was sometimes also used on its own. Matković et al. [Mat+17] show
regression coefficients of a user-developed surrogate model to quantify relationships
between A parameters and A features derived from AT output. Hazarika et al.
[Haz+20] visualize weight matrices of the neural network surrogate model to validate
that it learned domain-aligned logic.

Provenance

The term “provenance” [Xu+20] in the visualization literature roughly refers to tracking
either how data was generated/modified or how the user interacted with the system.
Capturing and using user interactions is useful, e.g., for an analyst to recall the analysis
process. Within vPSA, we can more specifically distinguish between the following
approaches:

• analysts mark single data cases that appear in a dedicated list (bookmarks) [Tor+11;
Dor+15; OAH15; FMH16; Swe+20; Day+20];
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• systems that capture every intermediate result [Bög+13; Bög+14; Zam+15; Bor+17;
Wal+20; Liu+21];

• load/save functionality to recover past work [WDR11; Ber+12];

• giving names to individual data cases [Yañ+17].

Thus, this theme refers mainly to accessing relevant data cases later. While other reasons
for collecting and using provenance data can be found in the context of vPSA, they were
rather few. In only one instance [SK13] was interaction history not used for bookmarking
but for replicating useful parameter settings on other datasets. Data provenance was not
used at all, which is maybe not surprising given that investigated data often come from
simulations and their heritage is thus well known.

Open Challenges and Future Work

We contextualize our directions on future work for the field with those by Sedlmair
et al. [Sed+14], who looked at vPSA from a more system-centric perspective. Their
identified research gaps pertained to data acquisition, data analysis, and cognition. Data
acquisition is about the ability to obtain interesting parameter/output pairs within the
vPSA system. The data analysis gap refers to “opening the black box” specifically for
the derivation/prediction steps in their data flow model. The cognition gap is about how
to facilitate the search for and navigation between A parameters. Other mentioned
future work topics were scalability, guidance, provenance, collaboration, and evaluation.

Regarding guidance, Ceneda et al. [Cen+17; Cen+18; CGM19] defined it as a computer-
assisted process that resolves a knowledge gap of the analyst in an interactive VA
session. It received lots of attention in recent years [Col+18; Spe+20]. Among other
facets of guidance the authors introduced the guidance degree, which is ordered from
weak to strong as orienting, directing and prescribing guidance. The knowledge gap
in vPSA usually relates to parameters (data domain), i.e., which settings cause the
most certain/optimal/sensitive/outlying outputs, so it should not be surprising that
many of our themes are associated with certain characteristics of guidance and vice
versa. A few examples: Orienting guidance often involves visual clues. Hence, it can
be found in our Input/Output Visualization and Data Case Organization themes. The
Manual/Constrained sub-theme is related to directing guidance when the system presents
options to choose from and prescribing guidance when it automatically adapts solutions or
prohibits selection outside of certain parameter subspaces. The domain of the knowledge
gap is mostly the data (parameters/output pairs). Some works [Koy+17; KGS19; KSG20],
which break the parameter selection problem down to simpler sub-tasks, can also be seen
to provide a solution in the tasks domain. The guidance input is usually the data, but
examples exist for others, e.g., domain knowledge [Was+14] or user knowledge [Pre+11].
Our increased understanding of guidance since the survey by Sedlmair et al. [Sed+14]
shows us that it has been there since the beginning [JM00; Tor+11], albeit sometimes in
subtle ways. Thus, the question for the future is less about how to provide guidance for
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vPSA, as we have provided many examples in this survey. Rather, it is about fine-tuning
the guidance process and making it more flexible, e.g., combining multiple guidance
inputs, timing guidance correctly [Cen+21], switching between guidance degrees [Pér+22]
and means to show the answer, and so on.

However, in our view, other topics (scalability, provenance, collaboration, evaluation) are
for the most part still current, even though our perspective is different, as we focus on
the user interface. We will list our topics for future work in vPSA first and afterwards
relate them to those by Sedlmair et al. [Sed+14].

Parameter Space Tasks in Time and Space. We collected 101 papers supporting
various vPSA tasks for models where either or both parameters and outputs have a tem-
poral/spatial reference. A complete table of papers, including referenced space/time char-
acteristics, can be found in the supplemental material of the published paper [PBM23b].
Slicing this dataset in different ways, we find chunks smaller than others and thus indica-
tive of gaps in the literature. Table 2.1 shows a contingency table of parameter space
analysis tasks and data characteristics of the parameters. The row margins show that
most papers discuss A (63/101) or S parameters (27). At the same time, we found only
a few papers for the remaining space, time, and abstract combinations. Naturally, some
parameter space tasks remain unsupported for these combinations (9 cells highlighted in
red). For 20 other combinations, there are only a few examples in the literature. We
highlight the relevant cells of Table 2.1 with three or fewer examples in light orange.
Hence, future work should investigate the tasks uncertainty analysis, partitioning, outliers,
and fitting for AT , AS , and ATS parameters. More generally, vPSA systems for
other than A or S parameters seem rare enough to warrant future explorations.

Data Volume. The larger collections of data we saw were about a few thousand
parameter settings and relatively small associated data, e.g., 3D models of a monitor
stand. Our survey gives relatively few answers how to enable vPSA for data-intensive
models, where the output of a single run is on the order of gigabytes of data. He et
al. [He+20] suggest a possible approach, in which the surrogate model skips the output
and learns the visualization image directly. Producing partial results during model
execution (Progressive Visual Analytics [Ang+18]) might be another viable strategy to
build interactive visualizations for data-intensive models.

Data Variety. Most of the models in our survey take one or a few parameters and
produce a single output. We did not see data structures such as graphs, sets, hierarchies,
or even multiple outputs a lot. This may be due to simplifications introduced by
visualization designers or an actual property of many models. In any case it is an open
question how to enable vPSA for such inputs/outputs.

Data Quality, Data Provenance, and Uncertainty. Many models take complex
input parameters, such as time series. These input parameters may need to fulfill some
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Parameter Total 68 59 25 25 19 13
A 63 37 45 22 17 14 11
S 27 18 12 3 8 5 2

TS 6 2 3 1 3 1 2
AS 6 6 2 0 2 0 0
T 5 4 2 3 2 2 1

ATS 5 4 3 1 0 1 0
AT 2 1 1 0 0 0 0

Table 2.1: Contingency table of parameter space tasks [Sed+14] (columns) and parameter
type (rows), where A = abstract, S = space, and T = time. Red color highlights
task/parameter combinations that were not tackled by any paper in our survey. Light
orange highlights combinations tackled by 1–3 papers. Note that a VA system may
support multiple tasks and a model may require multiple parameters.

properties, e.g., the time series being free of holes (no missing values). It may also be the
case that the original input did not have these properties and was preprocessed somehow
to this end. Few works consider the uncertainty introduced by such preprocessing steps, or
uncertainty that may have existed in the input from the beginning. This is an important
future research direction towards reliable and trustworthy insights with vPSA.

Analytic Provenance. The Provenance theme in our survey is about quickly accessing
individual data cases, as that is the part of provenance-related interactions that was mostly
exposed to users. Xu et al. [Xu+20] reviewed provenance in visualization and identified
several ends to which provenance data was used. We saw in our survey approaches for
model steering [Mar13; Koy+17; KGS19; KSG20] and replication [SK13], but others,
like adaptive systems or understanding user are less explored. In which ways analytic
provenance can be leveraged for vPSA is, therefore, an interesting research direction for
the future.

Composite Visualizations. We classified visualizations that show model inputs and
outputs. The majority used Juxtaposition, which speaks to the flexibility of the approach.
Some composition approaches were used seldomly or rarely, e.g., Integration, Nesting,
Overloading. This suggests that the design space of composite visualizations in vPSA is
not fully explored yet and future work in this direction might uncover useful visualization
idioms.
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Data Organization Approaches. Sorting and Grouping are the least popular sub-
themes in that category. That is somewhat surprising because these two approaches are
part of the basic organization activities we do in everyday life. E.g., when organizing a
bookshelf, we often group by book owner and sort by author. While related tasks are
different—quick retrieval (bookshelf) vs. pattern perception (parameter analysis)—vPSA
by flexible grouping and sorting of data cases should be explored more, given how intuitive
the two actions are.

Advanced Interaction Design. Woodbury & Mohiuddin [Woo+17; MW20] suggest
that designers prefer to pursue multiple design alternatives in parallel and to quickly
explore alternatives. We only found one system besides theirs that really allowed that
[Zam+15], where users edited graphs of drawing operations for a 2D pattern. How vPSA
users can work simultaneously on other complex models and how to quickly come up
with suitable alternatives of complex parameters is another promising research direction
for the future. In a biological simulation context [Haz+20] it was suggested that this
interaction paradigm may be useful not only for designers. A so far not taken direction
could be grammars, which encode rules how to construct complex objects from simpler
parts [ARB07; Guo+14; Zha+20]. Additionally, most surveyed works employed the
established WIMP paradigm (windows, icons, menus, pointers). Exploring vPSA with
alternative paradigms, like in virtual reality [Bru+16], or input devices, such as tablets
[Kaz+17], encompasses another direction for future research.

Collaborative Aspects. Most surveyed papers were intended for a single user working
on one machine. Collaborative aspects were seldomly considered in the proposed systems.
A part of Visdom [Kon+14] is dedicated to justifying decisions to avoid flood damages,
e.g., where to put barriers, so that officials may explain those to the public. How people
can work together in a vPSA setting, is still mostly untouched territory.

Opening the Black Box. Many papers in our survey saw their model as a black box
and focused more on parameter/output relations instead of how the internals work. The
many successful applications show that this approach works in general. It is especially
advantageous, e.g., when intermediate steps inside the model are not important or not well
understood by analysts. In other cases, it may lead to better outcomes or deeper insights
into how the model works. Future work should determine when and if the additional
effort of the “opening” process (e.g., in terms of visualization design) is warranted. A
few papers we surveyed considered a pipeline of processing steps, which could be viewed
as opening up a model. Aside from that, vPSA designers may draw inspiration on how
to open black box models from a large body of research about using VA to interpret
machine learning models [Cha+20].

Model Comparison. Most works investigate a single model. It is, however, not
difficult to imagine that alternative models exist, e.g., different segmentation pipelines
[Wei+16], models with different assumptions [Rai+14], or different formulations of the

59



2. Related Work

same physical reality [HG18]. In our survey we found only few works that focus on the
specific task of model comparison, e.g., finding respective parameter subspaces that lead
to comparable results. More research in this regard could help domain experts choose
models based on other considerations than exactness of the output.

Supporting Larger Data Processing Pipelines. Most of the models in systems we
surveyed deal with a single step of a more extensive data processing pipeline. Even, e.g.,
time series preprocessing, which is in itself a pipeline, is only at the beginning of a more
holistic task. The larger pipeline also consists of several interdependent steps. Every step
incurs choices regarding parameter settings or algorithms, influencing subsequent steps.
Systems we found focused either on single pipeline steps and ignored the bigger picture
or focused on the whole constructed pipeline and glossed over details. We believe the
spectrum between the two extremes is worth exploring more.

Evaluation Practices. Ultimately, we are all interested in what part of our visualiza-
tion designs worked and what did not, which is why we evaluate our designs. vPSA fits
mainly in the “Visual Data Analysis and Reasoning” scenario by Lam et al. [Lam+12].
Proposed evaluation practices include case studies, interviews, or controlled experiments.
All of these involve human participants. However, half of the surveyed papers where we
could infer that information reported no human participants (median 0.5, mean 4.39,
standard deviation 7.83). This number is to be taken with a grain of salt, as our survey
includes papers from various journals and conferences. Interactive visualizations for vPSA
were not always the main contribution of the paper. Nevertheless, it suggests a certain
imbalance between how vPSA systems should be evaluated and how it is done in practice.
Future work should put more emphasis on appropriate evaluation practices of suggested
designs and approaches to strengthen the body of knowledge of our community.

Relation to Blind Source Separation

Referring to the themes presented in the previous sections, one can observe that, currently,
BSS analysts identify parameter settings by a Manual / Constrained idiom with
Indirect Manipulation. Navigation between parameter settings happens by trial and
error [Sed+14]. There is no surrogate model and no systematic provenance.

It becomes apparent that BSS tackles several of the mentioned open challenges. In-
puts/outputs appear in sets and analysts are interested both in latent dimensions as well
as the unmixing matrix (Data Variety). BSS approaches considered in this thesis have
temporal/spatial parameters to set, but the support of PSA tasks is unevenly distributed
in the vPSA literature (Parameter Space Tasks in Time and Space). At the same
time, some popular themes are unlikely to work for BSS. E.g., extensive random sampling,
as it is often employed for multivariate parameter spaces (Automatic / Unsupervised
theme) is not considered practical for BSS. BSS parameters have to make sense for
the domain BSS is applied in, the dataset at hand, and for what one desires to find in
the output. Another example is Derivation, with which complex outputs are often
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simplified. While latent dimensions are expected to show underlying processes, such as
climate for SBSS in geochemical applications, there is usually no reference or ground
truth to which it would make sense to compare them computationally.

2.2 Temporal and Spatial Data Visualization

Due to the focus of this thesis, which covers temporal and spatial, but not spatio-
temporal BSS, and the volume of related literature, we consider temporal and spatial
data visualization separately. For an overview of spatio-temporal data visualizations, see,
e.g., [Bac+17].

2.2.1 Temporal Data

Time is a complex concept. Aigner et al., in their book about visualization of time-
oriented data [Aig+11], describe various possible characteristics that a specific time model
can have. There is the scale of the temporal domain, which can be ordinal, discrete,
or continuous. Only the relative order between recorded events is known in an ordinal
scale, but no information is available about how much time passed in between. If each
point on the time scale is equidistant from its neighbors, we are looking at a discrete
time scale. They are usually made from smallest time units (e.g., milliseconds) and it
thus impossible to represent a finer granularity. Continuous scales, on the other hand,
allow arbitrary precision. The arrangement of the time domain is often considered
linear, i.e., proceeding steadily from the past to the future, but in some circumstances a
cyclic arrangement of time (e.g., seasons) may prove more useful. Time granularities
[Dyr+00] allow to group time into conceptual units, such as minutes or business days. In a
calendar system, these are (mostly) hierarchically ordered on a lattice [Aig+11, Fig. 3.16].
Relationships between time primitives (instants, anchored, and unanchored intervals)
across granularities can be peculiar. A time point on day granularity is indeterminate
on lower granularities, such as minutes, as the particular minute is just not known.
Equality or generally order relationships change, too, across granularities. For instance,
December 31st and January 1st of the following year are always on different days, often
in the same week, and always in different years. Further complicating the issue are
irregularities betweeen physical time, i.e., the time that is constantly passing, and clock
time, i.e., the current time on the clock. These differences regularly appear as leap years,
leap seconds, or daylight-saving time. To account for these, the R package lubridate
[GW11] for time calculus distinguishes between periods, which account for clock time
changes independent of irregularities, durations, which track passing of physical time and
are thus not always equal to periods, and intervals, which are defined by two instants
and thus correspond to neither durations nor periods. Furthermore, time primitives
may be subject to uncertainty. Common models for temporal uncertainty [Gsc+16]
can be statistical, i.e., the uncertainty follows a statistical distribution (e.g., a normal
distribution), or bounded, i.e., any value within bounds is possible and no information
about its probability is available.
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For the purpose of this thesis, we consider only visualizations that use a discrete time
model without uncertainty. Additional data are associated to time instants in the form
of vectors. Thus, both univariate time series are relevant (one visualization per variable)
as well as multivariate time series (all variables in one visualization).

We picked three visualization idioms for univariate time series fitting to the mentioned
constraints to discuss them in more detail (Figure 2.8). We chose them for their generality,
i.e., the reader is likely to be familiar with at least one of them. Of course, specialized
visualizations for more specific tasks exist [Aig+11], e.g., comparing values in all sub-
intervals of the time series [Kei+06]. The most basic of our three candidates is a line graph
(Figure 2.8a), where time is on the X axis and the value on Y, while values are connected
by straight line segments. The slope of a segment thus encodes the delta between two
subsequent measurements and the area between the line and 0 the sum of values. A
variation of that visualization idiom is the horizon graph ([Sai+05], Figure 2.8b), which is
especially suited to smaller sizes. The Y axis has a fixed height and values that exceed it
are plotted again from the bottom (for positive values) in different color. It behaves like
the spaceship of the 1979 Atari game “Asteroids”, where space wraps around the screen
and the ship reappears at the bottom when it left the screen on top. Negative values are
often plotted reversed to save space, like pictured, in which case the Y axis encodes the
absolute value and color shows the direction. Finally, we can show two discretized time
granules in a tile map1 (Figure 2.8c), where the mark’s color (pictured) or size encodes
the value. The famous “Warming Stripes” visualization can also be considered a tile
map, although with just one granule (year) and tiles of extreme aspect ratio. While all
three visualizations show the same data, they are suited to different tasks [Gog+19]: For
instance, patterns in color bands (a continuous variant of a 1D tile map) are perceived
differently when they are shifted in time or value, whereas line charts suffer less from
this problem. Generally, while all three examples use a linear time domain, they could
be plotted on a circular domain. Di Bartolomeo et al. [dBar+20] compared the effect
of timeline shape (spiral, circle, horizontal and vertical line) on task performance. The
authors suggest that circular time domains should be avoided in visualizations unless
specifically requested.

When it comes to multiple variables, we can show one univariate visualization for each
variable side by side (Juxtaposition [Gle+11]) or try adding more variables to each
visualizations, like in a line chart with one line per variable (Superposition). More
sophisticated approaches exist. LiveRAC [McL+08] is a visualization approach for many
time series in the context of system administration where several metrics (e.g., CPU
load, free memory, network traffic, etc.) are tracked for multiple hosts. Time series are
arranged in a flexible grid and visualization idioms change between line charts, spark lines
and colored blocks depending on the current cell size. Fuchs et al. [Fuc+13] conducted a
comparative study where time series where shown as four glyphs designs. Line graph
glyphs performed best when comparing two values, while star and clock glyphs were

1While a colored matrix is sometimes also referred to as heatmap, we avoid this terminology here and
reserve a heatmap for filled areas of isocontours.

62



2.2. Temporal and Spatial Data Visualization

(a) Line graph.

(b) Horizon graph.

(c) Tile map.

Figure 2.8: A “Warming Stripes” dataset in different visualization idioms: Line graph
(a), horizon graph (b), and tile map (c). Refer to Section 2.2.1 for a discussion. They
show yearly deviations from the 1970–2000 mean of daily air temperature in Vienna
(Hohe Warte station, Klima ID 105), 1860–2022. Data obtained from ZAMG.

best when comparing two time instants. In subsequent work, glyphs seem common when
the task is outlier detection. Cao et al. [Cao+18] suggested the Z-Glyph to indicate
multivariate outliers, where each glyph shows the whole time series. Suschnigg et al.
[Sus+21] designed a glyph that encodes anomaly scores from several algorithms. In
contrast, those glyphs represent a single time step.

The connected scatterplot is a technique to visualize relative changes over time in two
time series. It works exactly like a scatterplot, except that dots are connected by lines
in temporal order. Haroz et al. [HKF16] investigated the type of errors users make in
comparison to a dual-axis line chart and found that the most common mistake was about
the direction of time. Javed et al. [JME10] conducted a controlled experiment in which
they compared superpositioned line charts, a braided graph (filled superpositioned line
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charts where segments are z-ordered by value), and small multiples of horizon graphs and
filled line charts. The investigated tasks were finding time series with maximum value at
an instant, finding the time series with the highest slope from start to end, and deciding
whether time series A at instant iA has a higher value than time series B at instant
iB ̸= iA. They found shared-space visualizations better for the first task, split-space
better for the second, and small multiples of line charts to be a robust choice over all
three tasks. Tominski et al. [TAS04] suggested the TimeWheel visualization, where time
is its own axis in the center and the other variables are ordered circular around it. The
visual encoding is similar to that of a Parallel Coordinates Plot (PCP), i.e., lines connect
the time instant in the center and the value on one other axis. In contrast to a PCP,
there are no polylines but straight lines for each pair of (time,variable) axes. While they
have been picked up again later by Claessen and van Wijk [CV11] in larger work on
flexible axes, no controlled task-based studies on their effectiveness were conducted so
far. Gruendl et al. [Gru+16] integrated time into a PCP differently, where time passes
on the Z axis, i.e., depth, in a perspective-distorted line chart between two PCP axes.
ThermalPlot [Sti+16] visualizes many time series by positioning them in a scatterplot
where the X axis encodes the current value and the Y axis the delta to some other point
in time. Time series are thus naturally grouped (via position) into positive/nevative
value/trend (Figure 2.9). Overview+detail visualizations [CKB09] support using the
scatterplot.

Figure 2.9: ThermalPlot. Stock prices of companies are shown as line charts and arranged
by current value (X position) and delta to a reference (Y position). Image: [Sti+16, Fig. 10]
© 2016 IEEE
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2.2.2 Spatial Data

Several spatial primitives (points, lines, areas, volumes) exist and they can appear in
combination with many data types, such as networks or multivariate data. Within
our research context, however, we only consider uni-/multivariate data associated with
irregular (i.e., non-gridded) points in the plane. That means while, e.g., cartograms
[NK16; Nus+18; TML18; Nic+22] or grid maps [MSS21] are well-known visualization
idioms, we do not discuss them here as they usually depict areas instead of points.
Fundamental considerations about thematic mapping and map design, such as projections
and computational aspects, can be found in textbooks [Den96; Mue14; And+20; KO21].

Geovisual Analytics. VA specifically concerned with the analysis of geographic
data is known in the literature as geovisual analytics or geovisualization. Andrienko
et al. [And+07] proposed a research agenda in 2007. Among the identified research
problems was the need to develop geovisual analytics methods and tools that scale well
to datasets with more than a few dimensions [And+07, Sec. 5.3.1], where we think
Spatial BSS fits best. This issue seems to persist over time from a community and
expert perspective [Çöl+17]. Geovisual analytics is closely tied to spatial statistics
[Cre93; Wac03] supported by interactive visualizations. From a historical perspective,
Haslett et al. [Has+91] and Gahegan et al. (GeoVISTA Studio) [Gah+02] were early
examples of using interactive statistical graphics for the analysis of spatial data. Later
on, researchers focused on supporting specific statistical methods. Examples include,
e.g., Kulldorff’s spatial scan statistic (Chen et al. [Che+08]), geographically weighted
regression (Demšar et al. [DFC08]), geographically weighted discriminant analysis (Foley
and Demšar [FD13]) or moving-window Kriging models (Demšar and Harris [DH11]).
Perhaps better known in the visualization community is the work by members of the
giCentre at the City University London. E.g., Dykes and Brunsdon [DB07] introduced
several geographically-weighted visualizations, such as scalograms, maps, and boxplots.
Wood and Dykes [WD08] suggested spatially-ordered treemaps. As a final example,
Goodwin et al. [Goo+16] used local regression coefficients to guide the analysis of a
spatial dataset on multiple scales.

Regarding the visualization of spatial point data we can broadly distinguish three
visualization approaches (Figure 2.10).

Focus on Value and Preserve Location. This group of approaches preserves the
point’s location exactly and displays the associated value by some visual channels of
the point’s mark. In the univariate case, the marks are often circles and the channels
their size or color (Figure 2.10d). For two variables, two channels might be combined.
Elmer [Elm13] compared eight bivariate map designs across some tasks from which
the bivariate choropleth design (a choropleth map using a two-dimensional color scale)
emerged as the most accurate. Glyphs [War02; Bor+13] are commonly employed to
depict more than two variables in maps. Opach et al. [Opa+18] compared star and
polyline glyphs (Figure 2.10b) in a map view and in a spatially-unordered grid. They
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(a) Phoenixmap shows class density as
line thickness along a concave hull. Im-
age: [Zha+21, Fig. 13b] © 2021 IEEE

(b) Star Glyphs show spatially varying
multivariate data points on a map. Im-
age: [Opa+18, Fig. 1d] © 2018 Taylor &
Francis Group

(c) Nickel distribution in the Kola moss
dataset (Section 1.1.3). Each rectangle
shows the median value of contained points.

(d) Figure 2.10c with exact locations and
five symbol sizes encoding value.

Figure 2.10: Examples of visualization approaches for point data. Approaches can be
grouped into distorting value (c,d), distorting locations (a,c), neither (b) or both (c).

found that maps are to be preferred over the grid and star glyphs over polyline glyphs
(most of the time) given their investigated tasks. Finally, even though the data itself
are points, the visualization does not need to be: Attribute Signatures [Tur+14] is a
collection of interactive visualizations in which the user defines a geometric path in a
map, and small multiples of variables show each variable’s value along the path as a line
graph.
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Focus on Value and Distort Location. The other group also displays values
associated to points, but in a way that the point’s exact position is lost. Visualization
designers may go down this path when point marks would be otherwise too heavily
occluded. The two strategies we identify here are aggregation and displacement.
Aggregation usually distorts both value and location, while displacement distorts only the
latter. For aggregation, isocontours (or, if colored, heatmaps) are one of the most widely
known visualization techniques. Individual locations are not shown at all and they are
replaced by curves denoting constant value. The contours themselves can be computed,
e.g., with Marching Squares (gridded data), Meandering Triangles (non-gridded data)
or kernel density estimation (non-gridded data). Jankowai and Hotz [JH20] generalized
isocontours to multivariate data. A simpler aggregation technique is to overlay a regular
tessellation onto the spatial domain, i.e., a grid of squares or hexagons, and aggregate
values per tile (Figure 2.10c). This approach is easily extended to multivariate data
[ZP04]. The main downside of it is, though, that the spatial distribution of locations
often does not follow the tesselation’s regularity, leading to some tiles comprised of many
points and others of very few. Statistical summaries computed per tile can become less
convincing as a consequence. There is also a modifiable areal unit problem (MAUP) as
the visualization image depends on the tesselation’s offset and tile size. Another angle
to that approach is to learn the to-be-aggregated areas from the data itself. This idea
runs under many names in the literature and has been called regionalization, districting,
or zonation, althouth the former term seems to have established itself. A variety of
algorithms exist [DRS07; Ayd+21] for different versions of the problem which is NP-hard
even in its simplest case, but sophisticated heuristics were suggested as well [WRK21].
Displacement techniques try to avoid the MAUP altogether as they still show visual
marks per point but displace them as little as possible to avoid occlusion and enable
readability. Pixel maps [Kei00] use very small marks per point, which are moved to the
nearest free location. As pixels are placed (and free spots filled) in the order of rows in
the dataset, there is no guarantee about the quality of a particular pixel map. Point grid
maps [Zho+17] also regularize point locations onto a grid but retain relative directions.
The resulting map is overlap-free but often sparse. Meulemans [Meu19] suggests a linear
programming approach to overlap removal of diamond-shaped symbols. Cutura et al.
[Cut+21] use a pixel-maps-like approach (move to nearest free cell) on a space-filling curve.
Finally, two papers consider both approaches. Opach et al. [Opa+19] compared various
versions of aggregation and displacement for clutter reduction in zoomable maps. Perhaps
surprisingly, their “control case” of no employed strategy was not much different in terms
of accuracy or preference compared to the alternatives. McNabb and Laramee [ML19]
suggest to show aggregated symbols if there is not enough space for individual symbols
and the latter do not deviate too much from the former. A tree structure designed for
that purpose, which has to be computed for each dataset once in the beginning, holds
the information which symbols to show at what zoom level.

Focus on Density. The last group is common with categorical data as the focus is less
on the point’s associated value and more on the density and distribution of a category.
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Similar considerations like to the other techniques apply, e.g., overplotting is an issue
here, too. Splatterplots [MG13] solve the problem by replacing dense point regions with
contour areas. BinSq [CM17] rasters the spatial domain with a quadtree and aligns points
on its cells. It also samples points so that the displayed relative frequency approximates
the actual frequency. Micro diagrams [GB20] show, e.g., pie charts on a raster of the
spatial domain. Phoenixmap [Zha+21] encloses each category with a concave hull and
encodes the spatially varying density as line thickness (Figure 2.10a). Jo et al. [Jo+19]
devise a declarative rendering model for multiclass density maps. Their pipeline consists
of binning, preprocessing, styling, rebinning, assembly, and finally rendering. Several
common visualization approaches, such as hatching, weaving, or color-blending, are
supported. It remains to be noted that, when considering spatially distributed categories,
one ventures into the territory of set visualization, which will be discussed next.

Relation to Blind Source Separation. The BSS approaches tackled in this thesis
take multivariate time series (or spatial fields) as input and produce latent dimensions,
which are a set of univariate time series (spatial fields). We can expect that BSS inputs
and outputs need to be displayed at some point, which will be achieved with the presented
visualization techniques. As analysts see input and latent dimensions mainly as separate
variables, we will prefer combined univariate visualizations, such as small multiples. A
property of BSS that seems not prominently discussed in the literature are the group
structures (sets). A set of latent dimensions “belongs together;” they must be selected as
a whole for downstream tasks and not mixed and matched. Similarly, some tasks are less
interesting to analysts. An example would be comparing latent dimensions within a set,
as these are by model assumption uncorrelated. Any visualization designs we use thus
have to take care to always show these group structures.

2.3 Set Visualization

Sets are unordered collections of arbitrary elements. They often appear in data analysis
as categorical variables whereof each data point may take on multiple values: E.g., the
genres (e.g., action, romance, or drama) in a movie dataset would constitute sets. In
biology, one could think of organisms’ habitat, like dry, forest, or Europe, as sets. Many
more examples exist. Set relations, such as union, intersection, and difference can be
calculated with set algebra. Sets are relevant to BSS because multiple runs with varying
parameter settings produce a collection of latent dimensions. Analysts are interested
in relations of these collections. E.g., asking what all possible latent dimensions are is
akin to a union among the collections, while the search for stable latent dimensions that
appear in many collections requires intersection operations.

Alsallakh et al. [Als+16] surveyed the field of set visualization and collected both visu-
alization techniques and analysis tasks. The latter are divided into element-related
tasks, such as finding a set containing a specific element, set-related tasks, such as
determining which of two sets is bigger, and attribute-related tasks, where questions
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revolve around data distributions within and across sets, e.g., if the average box office
income is higher for action movies than for horror movies. Regarding visualization tech-
niques (Figure 2.11), the authors differentiate between various categories. Euler/Venn
diagrams may be the best-known approach, where elements are enclosed by a closed
curve and the element’s position is arbitrary. It is often desired that Euler/Venn diagram
techniques are well-matched (the relations between curves precisely reflect set relations)
and well-formed (e.g., curves are simple, intersecting curves must cross, at most one curve
per set, etc.), although it is not always possible to achieve both. Recent examples of this
group include spEULER [Keh+22] and RectEuler (Figure 2.11a). The next group of set
visualizations concerns overlay techniques. Here, the set information is secondary and
overlaid onto another, primary visualization. A straightforward example are spatially
distributed categories, where each each element has a defined spatial position and some
categories, e.g., restaurants. This data type is also referred to as a “spatial hypergraph”
[Bek+22], because sets link spatially positioned nodes via hyperedges. Techniques can
be, among others, curve-based [Zha+21], like Euler/Venn diagrams, line-based [Alp+11],
where a line connects elements of the same set, or a hybrid technique that employs both
contours and lines, such as KelpFusion (Figure 2.11b). Node-link techniques, on the
other hand, encode sets and elements as different types of nodes and membership as links
between them. While the visual encoding is simple, these techniques often suffer from
scalability issues as both sets and elements are encoded as the same primitive, competing
for space, and many links usually entail many crossings. PivotPaths (Figure 2.11c)
tackled these problems with layout, interactions and details-on-demand. Matrix-based
techniques take their inspiration from adjacency matrices in graph visualization. Each
row is a set, each column an element (or the other way around) and a filled cell indicates
membership. These techniques may literally look like a matrix, as is the case for OnSet
(Figure 2.11e), but linear diagrams [RSC15; WDN23] are also examples of that category.
Finally, there are aggregation-based techniques where the number of elements is too
large for individual visual marks and frequency representations are used instead. UpSet
(Figure 2.11d) is an example for this technique, where each set intersection shown in a
separate row and their size by a bar chart. PowerSet [AR17] and RainBio [LT20] are
more recent examples.

Relation to Blind Source Separation. It becomes apparent that time and space are
not well represented in set visualization. Regarding time, some works consider dynamic,
i.e., time-varying sets [CPC09; AB20; Aga23] or categorical variables with temporal extent
[Ngu+16]. GROUPSET [LV22] is an interesting recent idea where set visualizations are
applied to time series. The value of each series at each time step is binned, so time steps
become set elements and bins become sets. An UpSet-like technique is used to present
the data. However, we are not aware of set visualizations that consider whole time series
as elements, as would be the case of latent temporal dimensions in TBSS. Regarding
space, current research in that direction seems to focus on spatial hypergraphs. Space in
other forms than a position attribute for nodes seems less explored. E.g., latent spatial
dimensions of SBSS would entail set elements that are maps along with vectors of loadings.
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(a) RectEuler. Image: [Pae+23, Fig. 1] Li-
cense: CC BY-NC

(b) KelpFusion. Image: [Meu+13,
Fig. 1d] © 2013 IEEE

(c) PivotPaths. Image: [Dör+12, Fig. 3]
© 2012 IEEE

(d) UpSet. Im-
age: [Lex+14, Fig. 7b]
© 2014 IEEE

(e) OnSet. Im-
age: [Sad+14,
Fig. 4]
© 2014 IEEE

Figure 2.11: Examples of set visualization techniques: a) Euler/Venn diagrams, b)
Overlay, c) Node-Link, d) Aggregation-based and e) Matrix.

Set elements are rarely seen as more complex data than, e.g., strings. While Alsallakh et
al. [Als+16] do mention attribute-based tasks in their survey, these attributes are seen
as numerical variables, such as the year a movie was released. It is also notable that to
properly account for set relations among elements where it is not useful or desired to
match them for 100 % equality, fuzzy sets are needed [PBM23a]. There are only a few
visualization proposals for fuzzy sets [PP10a; PP10b; Zhu+18] and the challenges for
uncertainty-aware set visualizations were recently recognized by established researchers
[Tom+23].

2.4 Ensemble Visualization

Wang et al. [Wan+19] define ensemble data in their survey as “data that contains a
collection of outputs generated from computer simulation models.” Examples would
be hurricane trajectories [Liu+17] or precipitation forecasts [Bis+17]. More generally,
ensemble data can refer to a collection of sufficiently complex elements [Xu+19]. Kehrer
and Hauser [KH13], in their survey of multifaceted scientific data visualization, highlight
the repeated simulations with perturbed parameter settings and describe ensemble data
as multirun data. Other facets of scientific data include spatio-temporal, multivariate,
multimodal (different acquisition modalities) and multimodel (multiple coupled simulation
models).
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Ensemble visualization is of interest to BSS as the latent dimensions obtained by a given
parameter setting form an ensemble. Multiple runs of the algorithm produce multiple
collections, which can be considered multiple sets (Section 2.3) or multiple ensembles
(this section). Wang et al. [Wan+19] identified five orthogonal dimensions in ensemble
data: Variable, location, time, member and ensemble. The first three refer to temporally
and spatially distributed data, possibly of multiple variables. Member expresses to which
member of an ensemble the data belongs, and ensemble to which ensemble, if there are
multiple. The authors [Wan+19] further identify a common visualization pipeline for
ensemble data (Figure 2.12).

Ensemble Data (Aggregation) Visualization (Composition)

Figure 2.12: Ensemble visualization pipeline after Wang et al. [Wan+19]. Ensemble
members are optionally aggregated (e.g., by statistical summaries), then visualized, and
finally optionally composited.

Wang et al. [Wan+19] further identified analytic tasks. These include overview, where
analysts seek a “concise visual summary” that conveys the overall uncertainty. An
example would be the streamline variability plots by Ferstl et al. (Figure 2.13a). Through
clustering in Principal Compononent space they obtain the major trends in the spaghetti
plot, and replace individual lines with contours where width indicates variability. Liu et
al. [Liu+17; Liu+19] work on the same data type, but convey the variability through
examples by representative sampling (which is akin to a composited hypothetical outcome
plot [Kal+19]). Another common analytic task for ensemble data is comparison, where
analysts seek to compare two or more members or even ensembles. Considerations for
visual comparison brought forth by Gleicher et al. [Gle+11; Gle18] apply here. An
example for visual comparison of two ensembles of time series was demonstrated by
Köthur et al. (Figure 2.13b). To compare individual time series, the authors use windowed
cross-correlation (WCC), i.e., time series are first split into equal-length windows, then
correlation (e.g., Pearson’s) is measured between windows. A lag, i.e., offset, accounts
for shifted time series. Thus, the top matrix plots aggregations of WCC in lag vs. time,
where a cell’s color indicates the median direction and amplitude of correlation, while
cell size inversely expresses the spread of WCC values. The bottom strip plots individual
window-lag combinations in a scatterplot of mean vs. standard deviation. Clustering
was identified as another common task. Classifying complex objects is on the one hand
useful for overview tasks as well, but also supports reasoning about why these groups
appear, about the physical processes that generate them. To support clustering, of course
actual clustering algorithms, of which there are plenty [XW05; XT15], may be used,
although custom distance functions are often required. Another possibility is to use
DR embeddings and rely on visual cluster analysis (Figure 2.13c, right plot). Wang et
al. also identified temporal trend analysis as an important analytic task. Here, the
evolution of ensemble members over time is of interest. Common visualization techniques
include superpositioned line charts, possibly showing statistical summaries of members
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(cf. Figure 2.12), small multiples of members at different time points, or specialized
visiualizations such as the Trend Graph (Figure 2.13d). Here, each circle represents a
cluster of ensemble members and each column a time window. How members move from
one state to the next is expressed by lines between circles. Major trends thus appear as
thick lines between large circles. The survey authors further include feature extraction
in their analysis tasks. Analysts want to obtain features from the ensemble set, such as
saddles, sources, sinks, eddies or vortexes. After computational methods identified those
features, they are usually overlaid over the spatial domain. Figure 2.13e shows critical
points in a 2D vector field: Yellow dots are saddles, blue dots are attractors and red
dots repellants. Finally, parameter analysis (cf. Section 2.1) is relevant to analysts of
ensemble data. They want to understand how parameters influence the outcome, both
in value and uncertainty, or identify sensitive parameter subspaces. As parameters for
simulation models are often multivariate, it is possible to employ visualization techniques
for high-dimensional data, such as parallel coordinates plots, scatterplot matrices, or DR
embeddings. To build the connection to the simulation output, coordinated multiple
views are often used. Consider again Figure 2.13c. The left plot shows a DR view of
multivariate parameters, the right plot a DR view of simulation outputs (time series).
The top plot shows all simulation outputs. This allows the analyst brushing and linking
in the outputs directly (top plot), parameter clusters (left plot), or output clusters (right
plot).

Relation to Blind Source Separation. The previously mentioned analytic tasks are
relevant for BSS, too, but less so on the member dimension. As latent dimensions identified
by the same parameter setting are, because of model assumptions, marginally and
temporally/spatially uncorrelated, there is, e.g., not much point in clustering. Temporal
trends or comparison among latent dimensions are also not relevant within an ensemble.
This changes, however, when we consider latent dimensions from different BSS methods.
No limiting assumptions exist between those and analyzing them can support parameter
analysis. Considering the relative importance of the ensemble dimension, one has to
realize that not many visualization approaches deal with multiple ensembles. Köthur
et al. [Köt+15] compare two ensembles of time series, but their approach, as it is so
often the case, does not translate to three or more ensembles. Biswas et al. [Bis+17] and
Wang et al. [Wan+17] consider three ensembles of precipitation forecasts. Their main
goal is to analyze the forecast’s uncertainty [Sed+14] depending on the simulated grid
size. For BSS, the ensemble visualization tasks overview, parameter analysis, comparison
and clustering have to be supported across many more than three ensembles.

2.5 Dimensionality Reduction

The basic idea in DR is that high-dimensional structures and relationships of data points
can be approximated by a low-dimensional subspace. The low-dimensional representation
of high-dimensional data is called an embedding or projection. As a general guideline,
high-dimensionally similar data points remain close to each other in the embedding, while
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(a) Overview. Image: [FBW16, Fig. 1, cropped]
© 2016 IEEE

(b) Comparison. Image: [Köt+15,
Fig. 3] © 2015 Wiley

(c) Clustering, Parameter Analysis. Image: [Orb+19, Fig. 1]
© 2019 IEEE

(d) Temporal Trends. Image: [OBJ16, Fig. 5] © 2016 IEEE
(e) Features. Image: [GT16,
Fig. 5] © 2016 Wiley

Figure 2.13: Examples of visualization techniques to support analytic tasks in ensemble
visualization.

high-dimensionally different data points remain far apart. Embeddings are extremely
helpful for visualization because position is the most effective visual channel, but we
cannot reasonably display more than three dimensions.2 A lot of algorithms have been

2Even three dimensions are generally discouraged for abstract data due to issues like occlusion or
perspective distortion.
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Figure 2.14: Human-in-the-loop process model for interactive DR. Interactions with DR
commonly pertain to the data itself (e.g., selecting or weighting data points), the feature
space (e.g., selecting or weighting variables), or the DR algorithm itself (e.g., parameter
tuning). Image: [Sac+17, Fig. 6] © 2017 IEEE

proposed and used for that purpose over the years [NA19]. A well-known example is, e.g.,
PCA, which finds orthogonal directions of highest variance. Nonato and Espadoto [NA19]
provide a survey of DR techniques in relation to data characteristics (e.g., does it support
categorical data?), desired properties (e.g., can it project out-of-sample data points?),
and user tasks (e.g., identifying clusters). Regarding the latter, the authors identified four
groups: Generate Map (produce the embedding itself), Explore Dimensions (e.g.,
mapping synthetic dimensions to original dimensions), Explore Items in Base Layout
(e.g., identifying clusters in DR scatterplot), and Explore Items in Enriched Layout
(e.g., identifying class outliers). Sacha et al. [Sac+17] structured visual interaction with
DR (Figure 2.14) and found that it can happen in the data transformations part of
the InfoVis pipeline, i.e., data selection, data manipulation, data annotation, or
feature selection. Further, parameter tuning is relevant for many DR techniques,
the selection of the technique itself, or any constraints that the embedding should
adhere to.

However, to human analysts, the DR process is often a “black box” and the inner workings
and the resulting embedding are poorly understood. Several questions may arise.

For instance, since the embedding will by definition not perfectly resemble the original
high-dimensional space, one could wonder how truthful an embedding actually is. Several
quality metrics have been proposed over time (see, e.g., [Aup07; Esp+19; Mor+23] and
references therein) that may be used to assess the projection error. A main idea here is
that the data points’ neighborhoods should be preserved, which is sometimes referred to
as false neighbor (point is nearby in embedding but should not be) and missing neighbor
(point is far away in embedding but should not be). Once computed, the amount of
error in a points’ neighborhood can be added to the embedding via colored areas [LA11;
RKW20; Jeo+22]. In relation to data points, the distances of other points can be
corrected [Sta+16]. When the data points belong to multiple categories, it is helpful
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to know where the category “borders” in the embedding are. Espadoto et al. [Esp+23]
propose for that purpose inverse projections: Each screen pixel is back-projected into the
original data space, where an ensemble of classifiers assigns a class to the high-dimensional
point. The screen pixel is then colored based on ensemble agreement. Ma et al. [MM20],
on the other hand, developed an interactive VA approach to investigate class separations.

Many state-of-the-art techniques require parameters that have to be carefully set. E.g.,
UMAP [MHM18], a neighbor-embedding technique based on k-neighborhood graphs,
requires (amongst others) a value for k. Setting it too low will lead to a focus on very
small neighborhoods and favor local over global structures being visible in the embedding.
Setting k too high will have the opposite effect. Another question analysts naturally ask
is thus which parameter settings produce a “good” embedding. Espadoto et al. [Esp+19]
ran a quantitative survey of DR techniques, in which they calculated several quality
metrics for embeddings produced by various techniques on different datasets. While this
of course does not take into account the dataset at hand, it can give general guidelines.
Etemadpour et al. [Ete+15] conducted controlled experiments to determine the suitability
of some DR techniques for visual cluster analysis. Xia et al. [Xia+22] did a similar
study and specifically distinguished between DR properties, such as non-linear/linear
and local/global. Morariu et al. [Mor+23] investigated how proposed DR quality metrics
match with user preference. Their models suggest that, e.g., scagnostics [WAG06], like
Sparsity, Skinny and Outlying, correspond well to user preference. Another angle to
preference of spatializations was investigated by Wenskovitch et al. [WN20]. They
asked participants to place cards, representing high-dimensional data points, in a plane.
Participants were only allowed to use grouping and spatialization operations, i.e., putting
two cards in the same group or placing them some distance apart. The results are insofar
interesting as original dimensions were both curved and overlapping as well as nested in
the produced embedding. Especially the latter is not a common feature of computational
DR techniques.

In that study, participants had to think hard about how to organize the data points in
order to come up with synthetic dimensions. The layout produced by one participant
might not be intuitive for the next. We encounter the same situation when the embedding
is computer-generated. Analysts often wonder, e.g., how the space is organized and
what the synthetic axes mean. Several visual and interactive aids were proposed to that
end. Gleicher et al. [Gle13] reject the premise and suggest a system where synthetic
dimensions must adhere to user-defined spatialization constraints. E.g., ordering cities
by “more like New York” along the X axis and “more like Los Angeles” on the Y axis,
naturally forces the X and and Y axis to correspond to these made-up dimensions. Endert
et al. [End+11] called this approach observation-level interaction and several variations
were proposed over the years [Kim+16; WN17; Sel+18; Dow+19]. Another option is to
compute the axis lines and add them to the embedding [FGS19]. Axis lines, being either
normal or parallel to each other in a cartesian grid, are curved for non-linear synthetic
dimensions and indicate their direction. Plotting the distribution of individual original
dimensions in the embedding is a simple way to hint at how synthetic dimensions combine
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the originals [Sil+15; Sta+16]. This approach also highlights (single-dimension) clusters.
Other approaches to do so are, e.g., area overlays for group labels [Soh+22] or adjusting
the shape of the data points’ visual marks to indicate local cluster structures [Bia+20].

Finally, VA approaches for DR techniques have been proposed, such as iPCA for PCA
[Jeo+09] and t-viSNE for t-SNE [CMK20], that combine several of the previously described
techniques.

Relation to Blind Source Separation. DR shares several high-level tasks with BSS.
Parametrizing the DR algorithm is a challenge here just as much as in BSS, albeit with
somewhat simpler parameters and a study suggests that defaults of popular techniques
can work well across datasets [Esp+19]. Structures in the embedding have to be found
and explained, similar to BSS latent dimensions. If synthetic dimensions are removed, the
remaining dimensions do not describe the original data perfectly anymore, and analysts
are interested what kind of errors are located where. The same is true in BSS. The
applicability of proposed solutions in DR to BSS is influenced by the fact that in BSS,
the order of points is fixed in time and space, so the errors that can occur are of a
different kind. Regarding parameter settings we refer the reader to Section 2.1, where
those challenges are discussed in detail. Finally, to support explaining latent dimensions
and patterns therein, certain suggested visualizations could be adapted. E.g., showing
the prevalence of original dimensions [Sil+15; Sta+16] could be helpful in BSS too.

2.6 Guidance

An issue of VA is that not only are the data under scrutiny complex, the visual interfaces
and automatic analysis methods may be, too. Users can get stuck during analysis and
need help. Guidance tackles this challenge. It was defined recently by Ceneda et al.
[Cen+17, p. 112] as a “computer-assisted process that aims to actively resolve a knowledge
gap encountered by users during an interactive visual analytics session.” The main aspects
of guidance (Figure 2.15), according to the authors, are the type of knowledge gap, what
it pertains to (domain), the guidance input and output, as well as how much guidance is
given to the user (degree). The concept of guidance focuses on the direction from the
computer to the human, but the implementation of a guidance process may leverage the
user’s interaction history to decide when and how to provide help. As such, guidance is a
mixed-initiative process. Ceneda et al. [CGM19] provided a survey about such guidance
approaches.

Collins et al. [Col+18] discuss guidance in more practical terms and considerations.
They suggest possible goals of guidance: To inform, to mitigate bias, to reduce cognitive
load, for training, for engagement, or to verify conclusions. In addition, the authors
provide possible types of knowledge (session-specific, prior, situation) that a guidance
process may take advantage of. Also to make guidance design more practical, Ceneda
et al. [Cen+20] described a framework for designers. It aims for effective guidance
(available, trustworthy, adaptive, controllable, non-disruptive) and proposes four steps
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Figure 2.15: Guidance characterization by Ceneda et al. Image: [Cen+17, Fig. 1] © 2017 IEEE

that the designer needs to take. First, they have to understand the analyst’s goals and
analysis phases. Second, the designer needs to look for and verify possible knowledge
gaps the analyst may encounter. Third, guidance is designed for these gaps by looking
for possible inputs, outputs, and degrees. Finally, the guidance designer considers how
user feedback may be leveraged to adapt guidance. A crucial aspect of guidance is
that it is given in a timely manner, i.e., when the user needs it and not before or after.
Ceneda et al. [Cen+21] trained a neural network to detect when guidance is needed
based on the user’s facial expression. To evaluate a designed guidance process, Ceneda
et al. [Cen+24] proposed a dual heuristic approach involving experts and end-users.
Researchers also tried to include the computer’s perspective into guidance models. Sperrle
et al. [Spe+21] introduced co-adaptive guidance, arguing that both user and computer
adapt over time to the behavior of the other. The guidance design space is supplemented
by a learning-teaching axis. Pérez-Messina et al. [Pér+22] introduced a typology of
guidance tasks in mixed-initiative VA environments. Based on the user’s search task
[BM13] and guidance degree, they introduce several guidance tasks. E.g., if target and
path are known (lookup) and orienting guidance is used, then the system can pinpoint
the sought data. One of their main observations is that if search and guidance tasks are
mismatched, the analysis may be disrupted when the search task is forcibly changed.
This is the case, e.g., when combining an explore task with prescribing guidance, which
makes it a lookup.

Relation to Blind Source Separation. The goals in BSS are relatively clear. Analysts
seek suitable tuning parameter settings and common/uncommon latent components
with/without relevant features. However, achieving these goals can be daunting, as, e.g.,
the tuning parameter space is huge (compare RQ1 in Section 1.2). As such, guidance is
very likely needed. The analyst’s knowledge gap pertains to the data (parameter settings,
components, features therein) and we expect that the guidance input is also mainly the
data (input variables) and user/domain knowledge. To complete all steps in the guidance
design framework [Cen+20], we have to investigate in the remainder of the thesis possible
guidance degrees, outputs, means, and feedback mechanisms.
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CHAPTER 3
Visual Parameter Analysis for

Temporal Blind Source Separation

The content of this chapter is published in:

Nikolaus Piccolotto, Markus Bögl, Theresia Gschwandtner, Christoph Muehlmann, Klaus
Nordhausen, Peter Filzmoser, Silvia Miksch. TBSSvis: Visual Analytics for Temporal Blind
Source Separation. Visual Informatics, vol 6, no. 4, 2022. DOI: 10.1016/j.visinf.2022.10.002.

Context. The following publication summarizes our first experiences with BSS and
presents the initial results of our collaboration with statistics/BSS experts (co-authors
Christoph Muehlmann, Klaus Nordhausen, and Peter Filzmoser). The particular BSS
method under investigation is gSOBI (Section 1.1.3). We propose a task abstraction
following the multi-level typology by Brehmer and Munzner [BM13] that lists both the
data interesting to analysts and the necessary tasks (e.g., compare parameter settings).
The VA prototype guides analysts in selecting the lag set parameter. It supports the
PSA tasks optimization and sensitivity. As part of this design study, we suggest novel
data mining and visualization techniques that support the particular data structures
found in TBSS, e.g., a set-aware k-medoids clustering and interweaved histograms. We
evaluated the VA prototype in expert interviews with five BSS experts.

RQ’s Concerned: RQ1, RQ2, RQ3, RQ4.
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3.1 Abstract

Temporal Blind Source Separation (TBSS) is used to obtain the true underlying processes
from noisy temporal multivariate data, such as electrocardiograms. TBSS has similarities
to Principal Component Analysis (PCA) as it separates the input data into univariate
components and is applicable to suitable datasets from various domains, such as medicine,
finance, or civil engineering. Despite TBSS’s broad applicability, the involved tasks
are not well supported in current tools, which offer only text-based interactions and
single static images. Analysts are limited in analyzing and comparing obtained results,
which consist of diverse data such as matrices and sets of time series. Additionally,
parameter settings have a big impact on separation performance, but as a consequence
of improper tooling, analysts currently do not consider the whole parameter space. We
propose to solve these problems by applying visual analytics (VA) principles. Our
primary contribution is a design study for TBSS, which so far has not been explored
by the visualization community. We developed a task abstraction and visualization
design in a user-centered design process. Task-specific assembling of well-established
visualization techniques and algorithms to gain insights in the TBSS processes is our
secondary contribution. We present TBSSvis, an interactive web-based VA prototype,
which we evaluated extensively in two interviews with five TBSS experts. Feedback and
observations from these interviews show that TBSSvis supports the actual workflow and
combination of interactive visualizations that facilitate the tasks involved in analyzing
TBSS results.

3.2 Introduction

Multivariate measurements of a phenomenon are common in many domains. Medical
doctors place electrodes on a patient’s body to analyze processes such as brain activity,
eye movements, or heart rhythm. Civil engineers measure vibrations on different parts of
a structure, such as a bridge, to detect possible faults. Financial managers invest money
in stocks, which are in a way sensors of economic processes, to gain wealth. Common to
all these examples is the time-oriented data and the assumption that data from different
sensors are in some way correlated and/or influenced by noise. However, analysts are
usually only interested in the “true” underlying processes.

To obtain these processes, analysts turn to Blind Source Separation (BSS). BSS comprises
established methods for signal separation that were applied, among others, in the
mentioned domains of medicine [CJ10; dLdMV00; Van+17], civil engineering [AA16] and
finance [OKM00]. Temporal Blind Source Separation (TBSS) refers to a subset of BSS
methods that specifically account for temporal correlation. TBSS is similar to Principal
Component Analysis (PCA) in the sense that i) TBSS methods work on any multivariate
dataset with quantitative variables, ii) they work on measured data only (hence “blind”)
and iii) separate it into a linear combination of uncorrelated components, like PCA.
Unlike PCA, TBSS accounts for temporal correlation and often requires complex tuning
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parameters. As both TBSS and PCA can be considered forms of dimensionality reduction,
analysts use TBSS and PCA for similar reasons, like data analysis or modeling/prediction.

During these activities, it is at some point necessary to inspect components visually. Like
with PCA, components are hidden until the separation algorithm is executed, but TBSS’s
complex parameter space severely complicates the issue: It is known that parameter
settings greatly influence the result, but not in which way a change in parameters
translates to change in components. Experts regard automated analysis by extensive
sampling [Sed+14] not a feasible option and there is little guidance from the literature,
which parameters to pick. Because a ground truth is rarely available, TBSS analysis is
inherently open-ended and exploratory as there are no known insights to confirm. The
workflow of TBSS analysts can broadly be described as i) pick a parameter setting, ii)
see if obtained components are useful or interesting and if not, go to i).

Some challenges make TBSS difficult to use in practice. Despite the important role of
visualization in their workflow, the current tool used by the analysts does not support
them well in this regard. Analysts need to manually program static visualizations, which
requires time they could otherwise spend on data analysis. Another challenge is the
amount of components. Each parametrization on a p-variate dataset yields a set of p
components that need inspection and comparison to previous sets. Analysts are, for
example, interested in commonly found components, but very quickly confronted with
hundreds of components to consider. This is a common task in ensemble visualization
[Wan+19], but made more difficult by components appearing in sets instead of one by
one. Also, when comparing multiple results, analysts will eventually find competing
options for their final choice. As there is usually no ground truth available to compare the
result to, analysts need detailed ways to compare individual results to make an informed
decision.

Visual analytics (VA [TC05]) as defined by Keim et al. [Kei+08] “combines automated
analysis techniques with interactive visualizations for an effective understanding, reasoning
and decision making on the basis of very large and complex data sets.” Considering
the strong focus of BSS analysis on visual inspection on multiple levels of detail, in
combination with mentioned challenges, we propose applying VA principles to overcome
these. We designed TBSSvis according to Munzner’s Nested Model [Mun09] for the TBSS
method “generalized Second Order Blind Identification” (gSOBI) [Mie+20]. We chose
gSOBI because it is recent and well suited to real-world datasets due to its flexibility
(see Section 3.4). The source code of TBSSvis is available at https://github.com/
npiccolotto/tbss-vis.

Our primary research contribution is a design study [Sed16] for TBSS, which improves
the visualization community’s knowledge about an area that it did not explore so far.
Specifically we provide:

• A task abstraction for TBSS which we obtained through a user-centered visualization
design process with TBSS experts (Section 3.6).
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• A VA design for gSOBI, a TBSS method, that supports the abstracted tasks by
combining visualizations, interactions, and guidance methods (Section 3.7).

• Confirmation of the effectiveness of our design in two interviews with five TBSS
experts (Section 3.9).

As part of this design study we put well-established visualization techniques together
to support the identified tasks. They include a multivariate autocorrelation function
plot and the application of a slope graph to sets of time series. These, together with a
set-aware clustering scheme (Section 3.7.3), are our secondary contribution.

3.3 Related Work
In the following, we elaborate on different approaches to visualize and compare time
series, ensembles, and models.

3.3.1 Time Series Visualization

Temporal data is ubiquitous in many domains such as finance, health, or biology, and
has been visualized for centuries since the first line graph was introduced by Playfair
[Tuf01]. Various other visual encodings have been proposed afterwards, such as tile
maps, sparklines, or horizon graphs [Aig+11]. They use different visual variables [Mac86]
such as position, color, or slope, and therefore exhibit different perceptual properties,
which makes them suitable for different analysis tasks. E.g., Gogolou et al. [Gog+19]
investigated the relation between different time series visualization idioms and perceived
similarity. They recommend to use horizon graphs when local variations in temporal
position or speed is important, while others (line graph, color band) are better suited for
notions of similarity where amplitude is less important. As this is the case with TBSS,
where analysts look for patterns independent of amplitude, we show time series as the
familiar line graph.

When multiple time series are at hand, their respective visualizations need to be composed.
Two popular approaches to do so are superposition and juxtaposition. Superimposed
encodings trade decreased usage of display space for legibility, as they do not scale
well after a couple of variables due to occlusion. An example besides the well known
superimposed line graph is the braided graph [JME10], which superimposes multiple
area-based marks. Because of the varying data dimensionality in TBSS, superimposition
is generally not a promising strategy. Multiple time series can also be composed with
juxtaposition, as is the case in LiveRAC [McL+08]. Various system measures (columns)
are displayed per machine (rows) in a space-filling table design, using semantic zooming
to change the level of detail between color bars, sparklines, and labeled line graphs.
When not using all available space, one could use small multiples [Tuf01] in different
arrangements. For instance, Stitz et al. [Sti+16] arrange small multiples of stocks by
price and price change in a user-selected time frame. Liu et al. [Liu+18], on the other
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hand, lay them out with a modified Multidimensional Scaling (MDS) algorithm such
that similar items are near each other. These approaches proved to be very useful for
individual time series, but cannot be applied as such to TBSS, where sets of time series
are involved. In the experience of our collaborators only some time series in TBSS will
carry a signal and be interesting for closer inspection. Our approach employs various
strategies to account for both facts, e.g., grouping time series by similarity and sorting
representatives by a user-selected degree-of-interest function, or juxtaposing time series
sets in a table-like design.

To keep features of long time series visible, designers often turn to focus-and-context
techniques, such as lenses [Tom+17]. In the simplest case, a lens mainly enlarges an area
of interest, such as in SignalLens [Kin10]. But more complex interactions are possible,
such as in ChronoLenses [Zha+11], where users can combine and stack multiple lenses.
As we designed TBSSvis for analysts who are accustomed to text-based interfaces, we
took care to avoid complex interactions. Time series may be enlarged up to a certain level
of detail in discrete steps and filtered to a contiguous subset of the currently visible time
interval with simple direct manipulation interactions. We describe them in Section 3.7.1.
We did not employ data reduction methods, neither in a data-driven [Shu+18] nor
visualization-driven way, e.g., by line simplification [Ros+20], as one risks that important
features are removed.

3.3.2 Ensemble Visualization

The goal in ensemble visualization is to make sense of a set of similar complex data
items, such as trajectories, often produced by a simulation with perturbed parameter
settings. Component sets obtained from different TBSS parametrizations constitute such
an ensemble, where each ensemble member is a set of time series. Ensemble visualization
has its origin in meteorology [Pot+09], but since expanded to more domains [Wan+19].
Analytic tasks for ensemble data [Wan+19] indicate popular strategies, such as comparing
members or grouping them by similarity, to support the stated goal. Existing works
[HHB16; Fer+17] often use popular clustering techniques (with domain-specific distance
functions) to support the latter task. This is not straightforward in TBSS as one has
to take care to not mix members of different sets into the same cluster. We discuss our
approach, a custom clustering algorithm that respects this constraint, in Section 3.7.3.

Time is a common part of ensemble data, but not a requirement [Mat+09; Pir+12;
MGH18; Xu+19]. One possible case is when ensemble members are univariate time series,
such as for Köthur et al. [Köt+15], who encoded the correlation between members in a
heatmap to support comparison of two ensembles. More commonly, other data types have
an associated time dimension such as multivariate data [OBJ16], particle data [HHB16],
network security data [HHH15], or spatial data [Buc+19]. However, ensembles of sets of
time series, as in our case, are not thoroughly explored so far and our paper presents a
first step in that direction.

109



3. Visual Parameter Analysis for Temporal Blind Source Separation

3.3.3 VA for Model Construction

VA supported the construction and validation of various kinds of models, such as
linear regression [MP13; Zha+14], logistic regression [Din+19], dimensionality reduction
[AWD12], classification [Cho+10], or artificial neural networks [Zha+19; Wex+20]. Most
works in the literature focus on non-temporal data, Bögl et al. [Bög+13] (univariate time
series modeling) and Sun et al. [Sun+20] (univariate time series forecasting) provided
two exceptions. TBSSvis, supporting construction and comparison of TBSS model
alternatives, extends the state of the art as TBSS works on multivariate time series.
During the construction step, questions of analysts pertain to which variables should be
included, how many parameters should the model have, and which subgroups should be
modeled. The latter question is closely related to model validation, where analysts, e.g.,
verify that a model works for diverse data cases, or how multiple models agree/differ
on outputs, such as predicted class labels. Established diagnostic plots or data exist
for several of these procedures, e.g., residual plots in time series modeling [Bög+13], or
confusion matrices in classification [Wex+20]. In contrast, the quality of a TBSS model is
solely defined by the presence of domain-specific interesting features in the output, thus
TBSSvis focuses on comparing multiple alternatives in terms of similarity of their output
and parameter settings. A complicating factor that we tackle is that TBSS outputs are
sets of time series.

3.4 Temporal Blind Source Separation

The statistical analysis of multiple measurements taken at different times is a challenging
task. Often, such multivariate time series are analyzed by transforming the data in certain
simple ways to uncover latent processes which generated the data. Probably the most used
method for such a task is the classical PCA, which uses linear transformations of the data
that result in components which have highest variance and are uncorrelated. Uncorrelated
components imply that the covariance between the found linear combinations is zero.
The linear combinations are given by diagonalizing the covariance matrix. Furthermore,
as the nature of the transformation is linear, interpretations of the results can be carried
out by the simple and well studied loading-scores scheme. However, PCA might not
be the best choice when the data at hand shows dependencies in time, as the main
source of information is in that case not covariance, but rather serial dependence. Serial
dependence is characterized by autocovariance, i.e., covariance between measurements
separated in time by a given lag. In analogy to PCA it would be desirable to find
linear combinations of the multivariate time series data which are not only uncorrelated
marginally (zero covariance between variables at each time step), but also uncorrelated in
time (zero autocovariance between variables for any lag). TBSS is a field of multivariate
statistics that studies methods delivering the former desired properties. Generally, BSS is
a well established model-based framework. It assumes that the observed data are a linear
mixture of latent components, which are considered usually easier to model and/or more
meaningful for interpretation than multivariate models. The goal of BSS is to recover
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these components based on the observed data alone. BSS is formulated and used for
many types of data, as outlined in recent reviews [CJ10; NO18; Pan+; NR22]. In the
following, we outline the concept of TBSS.

The model of TBSS considered here is xt = Act, where xt denotes the observed p-variate
time series, A is the full-rank p × p mixing matrix and ct = (c1,t, . . . , cp,t)⊤ is the set
of p latent components, which should be estimated. Thus the goal is to find a p × p
unmixing matrix W = (w1, . . . , wp)⊤, such that ct = W xt up to sign and order of the
components in ct. To facilitate the recovery, the assumption is made that the components
in ct have Cov(ct) = Ip and are uncorrelated (or independent) with mutually distinct
serial dependence. This means, for example, that all cross-moment matrices, such as
autocovariance matrices, of ct are diagonal matrices.

A very first approach for TBSS is the Second-Order Blind Identification (SOBI) algorithm
[Bel+97; Mie+14; Mie+16]. It finds the linear combinations of the data which make
autocovariance matrices for several lags as diagonal as possible. Hence, found components
are uncorrelated marginally and uncorrelated in time. It is well known in the statistical
analysis of time series data, that time series emerging from different scientific fields have
different key characteristics. For example, financial time series are not well characterized
by autocovariance matrices, but instead higher-order moments carry the most information.
This is denoted as stochastic volatility and in the TBSS literature it is shown that SOBI
fails for such time series [Mat+17]. Higher-order moments relate often to skewness and
kurtosis and, for example in our context, to the covariance of the squared data and
are meant to detect more unusual observations (heavy tails). An intuitive notion of
higher-order moments is that they translate to quickly changing effects, such as stock
prices that increase/decrease by large margins within short time frames (high volatility).
In such cases, higher-order moments describe volatility better than second-order moments.
To overcome this issue, a new TBSS method, denoted as a variant of SOBI (vSOBI)
[Mat+17], was introduced. Similar to SOBI, vSOBI finds the latent time series by
diagonalizing matrices of lagged fourth moments. Uncovered latent components are
uncorrelated marginally and additionally have zero fourth-order dependence.

Generally, time series might carry information both in the autocovariance and in the
higher-order time dependence, thus a combination of SOBI and vSOBI might deliver the
best results. Indeed, Miettinen et al. [Mie+20] proposed such a method, referred to as
generalized SOBI (gSOBI), which we focus on in this manuscript. It diagonalizes several
autocovariance matrices (SOBI part) and several matrices of lagged fourth moments
(vSOBI part). This method has three rather involved tuning parameters. The first one
b ∈ [0, 1] weighs SOBI versus vSOBI, where SOBI (b = 1) and vSOBI (b = 0) are the
extreme cases. The second (k1) and third (k2) tuning parameters provide the sets of
lags used for the SOBI and vSOBI part, respectively. A lag is a time interval given by a
number of time steps, the size of which is determined by the resolution of the underlying
time series. For instance, a lag of 6 in an hourly observed thermometer refers to an
interval of 6 hours. Common default values for gSOBI are b = 0.9, k1 = {1, . . . , 12} and
k2 = {1, 2, 3} [Mie+20], but Miettinen et al. also show that the selection of lag sets
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and weight has a huge impact on the performance [Mie+20]. Vague guidelines for these
tuning parameters exist in the community, such as lag sets should not be too small or too
large, and the lags should be chosen so that the corresponding (cross-)moment matrices
for the latent components have diagonal values far apart. Thus, parameter selection in
the context of SOBI is a highly complex problem with no practical solution yet [TLS05;
TMN16]. First steps for an informed trial & error routine can be determined from those
guidelines and by looking at the data. As an example, if the time series at hand show
substantial volatility, then the b parameter (weight of second- vs. fourth-order moments)
would initially be chosen closer to 0. Otherwise, volatility observed in the dataset might
not be visible in latent components. Lag sets generally can be chosen by observing how
long any visible patterns, like volatility, last. If they are rather short, then short lags are
more suitable than longer lags, and vice versa. The interdependence between parameter
choice and the variation in the output depends a lot on the dataset at hand, so much so
that general statements about it would be misleading. Instead we propose an advanced
VA approach, which allows defining alternative parameter choices and comparing the
respective outputs effectively, to discover such relations.

The R implementation of gSOBI used in the following is available in the package tsBSS
[Nor+21]. We call one execution of gSOBI a run. As outlined before it yields a set of p
univariate time series, which we call components. The outcomes of multiple runs with
varying parameter settings form an ensemble, where each member corresponds to a single
run. A member has the used parameters k1, k2 and b associated, as well as the output of
gSOBI. The latter is either the component set ct and the estimated unmixing matrix Ŵ ,
or nothing, in case the (cross-)moment matrices could not be diagonalized in a predefined
number of iterations. We call a run succeeding or failing, depending on the outcome.

3.5 Datasets
In this section we introduce two datasets, one from the financial domain (Figure 3.1a)
and one from the medical domain (Figure 3.1b), along with reasons why TBSS analysis of
them can be desired. Analysis of both datasets shares similar tasks. For instance, analysts
are interested in relevant parameter subspaces, common components and alternatives
to them, as well as the stability of obtained results. We formalize typical tasks and
questions involved in TBSS analysis in Section 3.6.

3.5.1 Financial data

Goods, currencies, and company stocks are traded every day at high frequencies. In
simple terms, investors make money by buying something at a price X and selling it later
at a price Y larger than X. To maximise Y −X in a short time frame the idea here is
to find a volatile collection of currencies or stocks (a portfolio), i.e., one that is subject
to sudden and extreme changes in value. To do so, we look at the daily exchange rate
of 23 currencies to Euro between the years 2000–2012 (23 variables, 3 139 time steps).
We preprocess the data to get logarithmic returns, a common measure in quantitative
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(a) First three currencies of the exrates daily
currency exchange rate dataset.

(b) First four variables in the ECG dataset.

Figure 3.1: Datasets in this paper.

finance when the temporal behavior of return is of interest. The first three variables are
shown in Figure 3.1a.

3.5.2 Medical data

An electrocardiogram (ECG) is a recording of the heart’s electrical activity. To obtain
it, electrodes are placed on the patient’s skin. These electrodes detect small electrical
changes which occur due to muscle de- and repolarization. ECGs are important for
medical analysis as many cardiac abnormalities show deviations to the normal ECG
pattern. Analysis of fetal ECGs may detect problems during fetal development, such
as fetal distress. While invasive methods exist to measure the fetal ECG directly, a
non-invasive method is often preferred as it does not harm neither mother nor fetus. The
fetal ECG is visible in the mother’s ECG, but it is weak and mixed with, e.g., respiratory
noise or frequency interference (compare first three rows in Figure 3.1b). Using TBSS on
ten seconds of the ECG of a pregnant woman (8 dimensions, 2 500 time steps), we try to
extract the fetal ECG following previous work [dLdMV00].

3.6 Task Abstraction
In this section we present a task abstraction for TBSS. We structure it according to
the data-users-tasks triangle by Miksch and Aigner [MA14] and use the terminology by
Brehmer and Munzner [BM13] for tasks. We developed the abstraction together with the
visualizations in an iterative design process following Munzner’s Nested Model [Mun09]
with three collaborators, who are co-authors of this paper and experts in BSS. In this
user-centered design process model, we first conducted unstructured interviews in order
to understand their problems and made ourselves familiar with literature they provided.
After that, we discussed our assumptions and ideas regularly with them over a course of
nine months. We discussed iteratively developed prototypes ranging from hand-drawn
sketches, to static digital images, to an interactive application which is described in
Section 3.7. During these sessions, we also questioned our current understanding of their
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tasks either implicitly through visualization designs or explicitly through discussions. In
the end, we interviewed five TBSS experts, who did not collaborate with us on the design,
to further validate our abstracted tasks (Section 3.9). The presented task abstraction is
a reflection on this process.

We touched upon the involved data with TBSS in Section 3.4 and Section 3.5 already.
These are a multivariate time series (input data), one real and two sets of integers (TBSS
parameters b, k1 and k2) and a set of univariate time series (latent components). The
temporal dimension is discrete and linear.

3.6.1 Users

Our users are data analysts or data scientists with formal education in statistics/math and
basic knowledge of BSS. They may also be experts in a specific application domain, like
medicine or finance. They work mostly with R [R C23], a language and environment for
statistical computation in which most BSS researchers publish their implementations. The
preferred work environment is RStudio, a popular text-based development environment
for R. Currently, they use built-in plotting functionality, and sometimes they use, for
example, ggplot2 to build customized visualizations. The output of either option is a
static visualization, of which RStudio by default displays only one at a time. Because
of this, our users are accustomed to well known static statistics visualizations such as
histograms, line graphs, box plots, etc.

3.6.2 Tasks

During this user-centered design process we identified the following tasks, which we
describe using the abstraction terminology by Brehmer and Munzner [BM13].

The high-level workflow can be separated into three phases, which are depicted in
Figure 3.2: Analysts first inspect the raw input data, continue to find parameter settings,
and then analyze obtained components. Given the exploratory nature of their analysis
process, analysts switch between the latter two phases until they feel they exhausted the
parameter space or obtained a useful result.

Generally, analysts want to discover observations or derive a modified dataset with
reduced dimensionality. There are two main targets of analysis. Components, which
are mostly analyzed as sets, are one target. Still, analysts want to discover and explore
interesting components, whatever interesting means in the data domain. Parameters
are the other analysis target. Analysts look for a “stable” result, i.e., one that can be
obtained with rather diverse parameter settings. The assumption is that its components
are then more likely to represent real processes. To this end, they need to compare
components and parameters of different runs. As an additional obstacle, when lacking
intuition and/or domain knowledge, analysts struggle to select (lookup, locate) parameters
and need guidance support [Cen+17] so they can browse and explore parameter settings
in an informed way. All these observations lead us to some low-level query actions:
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3.6. Task Abstraction

Figure 3.2: The existing analysis workflow (bottom) and the corresponding screens in
TBSSvis (top). The new workflow automatically obtains initial results and analysts can
start exploring immediately.

I1: Identify used parameters. Analysts want to see values of existing parametrizations.
In case of lag sets they inspect the distribution of chosen lags and if one lag set contains
more lags than the other.

I2: Identify unmixing matrix. Analysts turn to the unmixing matrix to interpret compo-
nents and to understand how they were formed. They look for large absolute values per
component.

I3: Identify cross-moment diagonality. Analysts want to inspect runs on a technical level
that is currently inconvenient to obtain and difficult to quantify. If the TBSS model
holds, then all cross-moment matrices are exactly diagonalized by the unmixing matrix
estimate. For real data, this is, however, rarely the case and thus analysts are interested
in the impact of the parameters on the diagonality of the different cross-moment matrices.

I4: Identify components. In a single component, analysts look for interesting features like
outliers or uncommon changes in shape. They thereby also check the absence of features
(noisiness). Analysts are further interested in the stability of a component, i.e., in how
many ensemble members the component is present.

C1: Compare success. First of all, prior to any comparisons, analysts must know what
can be compared. If a run did not succeed, only parameters could be compared as no
components were found.

C2: Compare parameters. To carry out sensitivity analysis, analysts need to compare
parameters between runs. They mainly look at differences in lag distribution and amount.

C3: Compare unmixing matrices. Before inspecting factors of individual components,
analysts investigate the similarity of unmixing matrixes by means of a custom metric
(MD-Index [Ilm+10]).

C4: Compare component sets. This task mostly relates to membership, which, however,
is difficult to assert with complex objects, such as time series, where one usually speaks of
similarity instead of equality. Analysts compare components only between sets and want
to know which component exists in multiple sets, and if so at which ranks, and if not
which is the most similar component, plus in which time frames components disagree.
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C5: Compare possible parameters. When choosing a new parametrization, analysts need
guidance through the parameter space and the ability to compare possible parameters in
some meaningful way to find promising settings.

3.7 Visualization Design & Justification
In this section, we present the visualization design we obtained based on the task
abstraction (Section 3.6) and implemented in a web-based prototype for gSOBI. A design
goal was to make TBSSvis generic enough to allow its use in many application domains,
because, like PCA, TBSS is a domain-independent method. After a cursory literature
search of TBSS applications and considering the available amount of pixels on common
screen sizes, we designed TBSSvis for inputs with the length of up to 5 000 time steps,
and up to 50 dimensions in mind. These limits do not accommodate extreme cases we
found, like EEG data (128 dimensions, 1.2 million time steps [TLS05]), but are suitable
to financial (40 dimensions, 140 time steps [OKM00]) or civil engineering (3 dimensions,
9 000 time steps [Liu+19]) use cases we found. Our design guidelines denote soft limits
of an interactive TBSS application: The quality of visualizations will gradually decline
with data of higher complexity and the execution time of the used TBSS algorithm will
increase.

While we implemented visualizations for all abstracted tasks, for brevity we will focus on
an illustrative subset of those. Specifically, we will discuss visualizations for tasks that
pertain to

• identifying and comparing components (or sets thereof),

• identifying and comparing used parameters, and

• comparing possible parameter settings.

TBSSvis consists of three screens, which are depicted with their connection to analysis
phases in Figure 3.2. The Input Visualization screen shows the raw input data, a feature
requested by our collaborators. The Ensemble screen allows exploration of parameter
settings and components. Finally, the Parameter Selection screen is used to select new
parameter settings. We will focus on the latter two. How presented visualizations work
together is illustrated in the usage scenarios (Section 3.8).

3.7.1 Time Series Visualization and Interactions

Time series are plotted vertically aligned to facilitate comparison and ordered by variable
name (for input variables) or by an interestingness function (for latent components, see
below). The display of and interaction with all time series in TBSSvis is handled by
the same logic as shown in Figure 3.3. Due to the length and amount of time series, we
employ semantic zooming and at first save display space by drastically shrinking their Y
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axis and omitting any labels by default. This can be changed with interaction: On hover,
we display axis labels for the hovered time series. The Y axis of an individual time series
can be enlarged in discrete steps by another interaction (pressing hotkey on keyboard
and clicking). If an analyst is interested in a contiguous subset of the time series, it is
possible to zoom in with brushing, which will affect all time series in the application.
Both the semantic and temporal zoom can be reset with interactions recommended by
Schwab et al. [Sch+19].

Figure 3.3: Display of and interaction with time series. (A) A time series is displayed
with a line graph, an optional label, and an optional bar to its left. The bar encodes a
DOI function of a time series. (B) Typical vertical arrangement of multiple time series in
TBSSvis. The user enlarged the first and last time series to different sizes and hovered
over the third, thus its X axis labels are shown.

As described in Section 3.4, the order of components is not defined. In practice, this means
that analysts use measures which are sign-independent to compare components, such as
absolute Pearson correlation, and impose an order by sorting components according to a
function. We will call this a degree-of-interestingness function (DOI), and require it to be
any function f : Rn → R that maps a time series of length n to a scalar. Because TBSS
is a domain-independent method, many DOI functions could be useful [Fu11] depending
on what the domain’s interesting features are. E.g., for detailed cardiac analysis, different
widths and types of ECG wave patterns could be mined. Based on discussions with
our collaborators we use the absolute third (skewness) and fourth moment (kurtosis) in
TBSSvis. These are useful to find the most skewed components and those with the most
outlying values, as the first two moments (mean and variance) of all components are
identical. We added a measure for periodicity [VYC05] after our user studies. The DOI
function can be changed in the toolbar, and all views that show component-related data
will update as the set members are sorted in descending order based on the new DOI
function values.

3.7.2 Color

According to Mackinlay [Mac86], color is the most effective visual variable for nominal
data after position, and, therefore, often used to encode different data classes. In multiple
views, the same classes should be encoded with the same palette [QH18]. Because humans
can only reasonably distinguish a few different colors, we cannot statically assign colors
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to all ensemble members. We, therefore, use a user-controlled dynamic assignment of
colors of a qualitative palette to encode data related to user-selected members. The
available colors are displayed in the toolbar and can be reordered with drag & drop.
When hovering over an unselected member, the next free color (left to right) is a) used to
highlight its related data in all views and b) associated to the member when selected. As
one color is always needed for highlighting, the last free color cannot be used for selection.
The color order determines the plotting order in all comparison views.

3.7.3 Tasks I4/C4: Identify/Compare Components (Sets)

We precompute initial parameter settings automatically, to allow immediate exploration
of the output space: Variations of gSOBI’s R package’s defaults (3 settings), a recommen-
dation from the literature [TLS05] (1 setting), and an additional user-defined number of
random settings. This overcomes initial hesitation towards parameter setting choice and
may give an estimate of what the relevant parameter subspace is.

Each successful run (Section 3.4) produces a set of time series. Already at the start
of the analysis after precomputation, the amount of components to consider might
be in the hundreds. Clustering is an established approach to counteract this, where
data cases are grouped by similarity. This allows an analyst to focus on representative
elements of the clusters. Many clustering techniques exist [XW05; XT15], but using
them with all components from all sets has a major drawback: The clustering scheme
will put components from the same set into the same group, which our collaborators
found undesirable. The grouping should respect the set structure in the data and group
components only between sets, not within them. Additional requirements we gathered
for the clustering scheme are that it should not depend on a distance metric (unlike, e.g.,
k-means) and produce an existing data case as cluster representative (again unlike, e.g.,
k-means). The former is related to the similarity measure for components suggested by
our collaborators, the difference in absolute Pearson correlation distcor = 1− |cor(ci, cj)|.
Since we do not know if it supports the triangle inequality, we should not rely on it.
The latter requirement stems from the design principle to show actual data over visual
abstractions.

Clustering Algorithm

We developed a custom clustering scheme to achieve our requirements. Starting from the
realization that we basically want k-medoids, as it does not need a distance and produces
existing representatives (medoids), we looked for a way to constrain the clustering process
to obey the set structure. Constrained versions exist for k-means [Wag+01], but we did
not find one for k-medoids. However, it was possible to adapt it using a k-means-like
formulation of k-medoids [PJ09]. Constraints in our case are of the type cannot-link, i.e.,
they express which data cases must not be grouped into the same cluster. We add one
cannot-link constraint per pair of elements that belong to the same set. For m sets, each
containing p data cases, this amounts to mp(p− 1)/2 constraints in total.
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Algorithm 3.1 shows pseudocode of our custom clustering scheme. The initial medoids
are obtained by an unconstrained k-medoids algorithm [SR19] on line 2. Following [PJ09]
we use the sum of distances from all data cases to their medoids as cost function (line 3)
and compute it for the initial clustering. Then, while constraints are violated, i.e., there
is a cannot-link constraint for any two data cases assigned to the same medoid, we update
the clustering (line 5). If there are no violated constraints, there is nothing to do as
the initial clustering is a valid solution. Otherwise, we first select the most central of
data cases assigned to same medoid (i.e., with smallest sum of distance to other data
cases in that cluster) as a new medoid (line 6). Data cases are then reassigned to the
nearest medoid that does not already contain another data case for which there exists a
cannot-link constraint (line 7). These are steps 2 and 3 in the k-means-like formulation
for k-medoids [PJ09]. We update the cost for the current clustering (lines 8–9) and repeat
this loop (lines 5–12) until no constraints are violated anymore. Small necessary checks,
e.g., whether or not there are still violations after the loop, were left out for brevity.

Algorithm 3.1: Pseudocode of constrained k-medoids, with which we obtain a
clustering on sets of time series (Section 3.7.3).

Data: Dissimilarity Matrix D, constraints C, medoids M , assignments of data
cases to medoids A, number of partitions k

1 Function constrainedPAM(D, C, k) is
2 M, A← FastPAM(D, k)
3 cost← getCost(A, D)
4 cost′ ← cost
5 while violatesConstraint(A, C) or cost− cost′ > ϵ do
6 M ′ ← findNewMedoids(A, D, k)
7 A′ ← assignToNearestPossibleMedoid(M’, C, D)
8 cost← cost′

9 cost′ ← getCost(A’, D)
10 A← A′

11 M ←M ′

12 end
13 return (M, A)
14 end

Clustering Quality and Number of Partitions

The constrained k-medoids clustering takes one user-provided parameter, which is the
desired number of clusters. We use a scented widget [WHA07] to allow setting this
parameter in an informed way (Figure 3.4-A). The bar chart in the widget shows the
average cluster separation as a clustering quality measure for a given number of clusters.
Therefore, values with high bars suggest the number of meaningfully different components
in all currently available sets.
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Component Overview

The cluster medoids are shown underneath the Clustering Quality visualization, vertically
aligned in a list, sorted by the DOI rank of the medoid (Figure 3.4-B). To further support
Task C4, we show a histogram to the left of the medoid. The histogram shows the
rank distribution of the contained components in their respective sets. Additionally, we
encode distcor to the cluster medoid with opacity. This way, stable (stacked bars with
high opacity) and unstable (scattered bars with low opacity) components have distinct
histogram shapes.

Analysts can inspect components in a cluster by clicking the “eye” icon, after which the
list item expands and lists contained components in the same fashion as cluster medoids.
Clicking a bar in the histogram or a time series label selects the associated ensemble
member.

A

B

C

Figure 3.4: Ensemble screen of TBSSvis (medical data) configured to facilitate comparison
and inspection of components and sets thereof. Left part shows the Clustering Quality
(A), which suggests an optimal clustering with 8–10 partitions. Medoids of the 10 clusters
are listed underneath (B). The fourth list item readily shows the fetal heart signal and
was expanded to show cluster members. Two component sets (red and blue) were selected
for detailed comparison (right half). The Slope Graph (C) highlights similar components,
their rank changes and set similarity overall.
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Slope Graph

Components of selected sets are visible in a separate view, again vertically aligned and
sorted by DOI (Figure 3.4-C). Each selected set has a unique assigned color and all
associated data is shown in this color. Multiple selections are juxtaposed horizontally
in columns, which can be rearranged by the analyst. Analysts can inspect components
visually as they are, or they can also display a slope graph between columns. Lines of
the slope graph connect similar components, and thickness encodes similarity from high
correlation (thick) to low. This way, it is easy to see stable (thick, single, mostly straight
lines) and unstable components (no or thin, multiple, tilted lines), their rank changes
and set similarity at a glance.

3.7.4 Tasks I1/C2: Identify/Compare Used Parameters

Parameter space analysis [Sed+14] is another important task for BSS experts, where
they are mainly interested in sensitivity analysis and partitioning. We facilitate these
tasks with tailored visualizations (Figure 3.5).

Similarity Views

Similarity of so far obtained component sets, as well as selected parameters, are shown
in three separate dimensionally-reduced views. Marks that are close to each other
suggest similar components and k1/k2 parameters. Multidimensional Scaling (MDS) is
an appropriate dimensionality reduction technique for global cluster analysis according
to recent publications [NA19; Xia+22]. We use non-metric MDS [VR10] as we do not
always have a distance metric. As MDS will project elements with same values in
high-dimensional space to the same low-dimensional points, we would soon run into an
occlusion problem—consider an analyst who keeps lag sets the same, but varies only the
weight. There are a couple of ways to deal with occlusion, most notably lenses [Tom+17].
However, our users are not used to complex interactions, so we changed the tradeoff
between position accuracy and occlusion. As an implementation of CorrelatedMultiples
[Liu+18] was not available, we only rasterize the MDS plot and move overlapping points
to the next free cell. When hovering over a point, the other points will change their
size proportionally to the original dissimilarity, thereby allowing analysts to investigate
projection errors.

Parameter Comparison

To compare weights of different parametrizations, we encode triangle marks on a shared
axis. Triangles are stacked if they would otherwise completely occlude each other. To
compare lag sets, we use interweaved histograms where the color saturation of a bar
encodes the lag size to give an additional visual hint of the lag distribution, and to be
consistent with the encoding in the lag selection (Section 3.7.5). Figure 3.6 shows how
they are generated. First, individual bars are positioned in a grid such that bars of
the same lag set are in the same row, and bars representing the same bin are in the
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A B C

Figure 3.5: Ensemble screen of TBSSvis (medical data) configured to facilitate comparison
and inspection of parameters. Three failing runs were selected. Left column shows a
tabular overview (A). Middle column shows DR projections of component and parameter
similarities (B). Right column shows detailed comparison views to facilitate parameter
comparison (C). It is apparent that failing runs had a weight parameter b of 0.25–0.6 and
k1/k2 lag sets that span the whole range, which suggests that this parameter subspace
should be avoided.

same column (base view). To save display space, empty columns are hidden by default
(condensed view), but can be shown after user interaction. Increasing the bin size leads
to familiar histogram shapes (aggregated view). Interweaved histograms show distinct
images for same (bars align vertically and have similar height) and different lag sets (bars
appear interweaved).

3.7.5 Task C5: Compare Possible Parameters

To obtain a new result, analysts need to select parameters. They consist in the case of
gSOBI of two lag sets and one weight (Section 3.4).

To facilitate this selection process, we used the guidance design framework [Cen+20] to
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Figure 3.6: Interweaved histograms encoding two lag sets A and B facilitate comparison.
The base version encodes the presence of a lag by filling the corresponding rectangle with
color hue. The condensed version, which is the default, omits lags that are in no lag set.
Finally, when increasing the bin size (pictured: to 2), the analyst sees the aggregated
view, where rectangles are transformed in small bar charts.

design appropriate guidance [Cen+17]. Analysts do not know which lags to select and
are generally aware of this knowledge gap. As discussed in Section 3.6.2, the analysis
goal is to obtain a new/interesting result. Issues occur in the phase of lag selection,
because the space of possible lag sets is huge. Analysts currently do not use additional
information about lags, mostly due to time constraints. The knowledge gap lies in the
execution and relates to the input data. We opt for orienting guidance, because analysts
select lags also based on past experience and domain knowledge, so stronger guidance
could be detrimental, and because our guidance input is not (cannot be) the “true” data:
We compute it from the input data, which are per BSS model a linear combination of
the components we are interested in. Based on the input data, we calculate guidance
output per lag that help relate them to each other:

Guidance Output (GO) 1: Calendar relation. We compute which lag fits best to intervals
in bigger calendar granules. The benefit of this is two-fold. First, lags are abstract and
do not consider the calendar used in the data, so thinking in terms of days, weeks, etc.,
is a more intuitive alternative for someone familiar with the data. Second, it allows us to
organize lags by filtering to those which correspond to a difference in a given calendar
granule, thereby reducing the amount of lags to reason about.

GO2: Largest autocorrelation in input time series. White noise is a serially uncorrelated
process, i.e., does not exhibit autocorrelation, so this measure indicates a latent component
might not be white noise.

GO3: Eigenvalue difference in autocovariance matrices. The analysts use it to learn more
about the input data and it can inform the parameter selection as lags should be chosen
such that this eigenvalue difference is big (see Section 3.4).

GO4: Cross-moment matrix diagonality. This can only be computed when a parametriza-
tion of a successful run is refined, i.e., an unmixing matrix estimate exists. It shows
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the analyst which selected lags had an impact on the diagonality of autocovariance and
fourth cross-cumulant matrices. It can be understood as feedback into the guidance
system.

Lag Selection

We support selection of a single lag set with multiple coordinated views (see Figure 3.7).
The lag size is encoded with color saturation, to make long, medium, and short lags
distinguishable in all views, which is roughly how analysts reason about lag sets.

A

B

C

D

Figure 3.7: The Lag Selection view (ECG data): Lag size is encoded with color saturation.
Lags are filtered to those corresponding to a temporal difference of multiple seconds in
the underlying calendar. The PCP (A) further narrows them down to those with high
autocorrelation. A MACF plot (B) shows the autocorrelation of input data at brushed
lags. Lags can be selected by clicking and highlighted by hovering in the MACF plot.
A user-selected input time series is shown underneath (C) next to a scatterplot of the
datapoints of the series at the currently highlighted lag. The right-most column (D)
allows analysts to skip the interaction, and shows the current selection.

A parallel coordinates plot (PCP) displays all lags corresponding to a selected calendar
granule (Figure 3.7-A), which can be configured by the user. Its dimensions are GO1–4,
and values of selected lags are displayed as triangle marks next to the axes. The PCP
supports common interactions such as inverting dimensions, reordering dimensions, and
brushing. It is used to reduce the parameter space to a manageable subset. This subset
is then visualized in a multivariate autocorrelation function plot (MACF), so analysts
can view the temporal structure of all variables (Figure 3.7-B). The MACF shows all
univariate autocorrelation function plots, composited through nesting: One box contains
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the autocorrelations of all variables at a given lag. Autocorrelations are encoded as bars,
as in the univariate version, and can be sorted by variable name or by value. The latter
is the default because it shows the distribution of autocorrelation values. Hovering over
a box highlights the lag, which affects the next view below it. Clicking a box adds or
removes the lag from/to the selection, which is shown in the right column in the same
fashion as interweaved histograms (Figure 3.6).

Underneath the MACF we display a user-selected input time series as line graph, and a
scatterplot of the time series’ values vs. the values lagged by the currently highlighted
lag (Figure 3.7-C). This allows the analyst to find correlation patterns which are not
surfaced by the MACF or the time series itself. A line on top of the time series shows
the extent of the currently highlighted lag in context.

These views allow the analyst to interactively explore possible lags. Should they exactly
know what they want to select, or rather not use an interactive system because they are
used to static tools, they can enter the desired lags in the input box in the right column
(Figure 3.7-D) in a format similar to R’s seq shorthand syntax and proceed.

3.7.6 Task C3/I2: Compare Unmixing Matrices

We support this task (I2) by showing the factors as a heatmap where a univariate
color scale encodes the absolute value in a row with white (low value) to black. When
analysts see interesting patterns, they can select cells, and the respective input data
and components will be shown underneath the matrices (Figure 3.8-H). This allows to
investigate the relationship between inputs and components. Task C3 is also supported,
for which we encode a BSS-specific similarity measure [Ilm+10] in a heatmap with a
univariate color scale.

3.8 Usage Scenarios
In this section we describe how the designed visualizations (Section 3.7) provide insights
into the presented datasets (Section 3.5). The financial dataset was used in our user
studies (Section 3.9), while we added the medical dataset ourselves to provide broader
context to the reader. The usage scenarios we describe are based on what we learned
during aforementioned user studies and also during discussions with our collaborators.

3.8.1 Financial data

We load the financial dataset (Section 3.5.1) of 23 currency exchange rates to Euro into
TBSSvis and start with 10 parameter settings. From the Component Similarity View
(Figure 3.8-A, Section 3.7.4) we can immediately see that two component sets are very
similar as they are very close to each other (purple highlight) and hovering does not
change their relative sizes. Selecting them reveals that one of them did not use the k1
lag set at all (Figure 3.8-B), suggesting that this parameter’s influence is small and we
should focus on k2 when selecting parameters. This is in line with our expectations of
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financial data (Section 3.4). Looking at the clustering visualizations, no clear picture
emerges. The Clustering Quality (Line 14) increases slowly with the number of clusters,
but there is no distinctive peak (Figure 3.8-C). Thus, we expect that all components
are somewhat similar to each other. Inspection of the Component Overview (Line 14)
confirms that, as many components share a similar pattern: They are very noisy with
more extreme values during the years 2008–2009 (Figure 3.8-D, purple highlight marks
years 2008–2009). This was the time of the global financial crisis. We try to obtain
an alternative result and go to the Parameter Selection. We set the weight b to zero
and do not use SOBI part (k1 parameter) at all, following our initial hypothesis. In the
Lag Selection (Figure 3.8-E, Section 3.7.5) for k2 we quickly select lags that correspond
to 1–3 days, 1–4 weeks, 1–3 months and 1 year intervals in the underlying calendar.
We do it this way because available guidance outputs do not seem informative due to
the amount of noise in the dataset. E.g., the autocorrelation (GO2) of weekly lags is
very low (at most 0.06). The newly computed result is colored green in TBSSvis and
automatically selected. We look at its components and compare it to the two identical
results. The Slope Graph (Figure 3.8-F, Line 14) shows many thick lines that connect
identical components (purple highlight). As we want to find currencies to invest in, we
turn to the Component Overview again. The histograms show stacked and saturated
bars, thus suggesting that the first couple of components are stable and common in all
results (Figure 3.8-G). We, therefore, pick three that have volatile segments outside of
2008–2009 to rule out a global financial crisis as the cause for volatility. The Unmixing
Matrix visualization (Section 3.7.6) shows which currencies are associated with these
components (Figure 3.8-H, black time series). We will ask our financial advisor about
investing in Thai bhat, US dollars, Turkish lira, or Philippine pesos.

3.8.2 Medical data

We load the ECG dataset (Section 3.5.2) from a pregnant woman into TBSSvis. Looking
at the raw inputs in the Input Visualization we can confirm that the fetal heart signal
is visible in the mother’s ECG (Figure 3.9-A, purple highlight). We start with 10
precomputed parameter settings, 7 of which succeed. The Clustering Quality (Figure 3.9-
B, Line 14) suggests that 8–11 meaningfully different components were obtained, as
the height of bars steadily declines afterwards. We set the clustering to 10 partitions.
A healthy fetus has a heart rate of 110–160 beats/minute on average, which is higher
than that of an adult (60–100). A candidate component for the fetal heart signal, which
shows peaks of increased frequency, is readily visible as 4th (sorted by kurtosis) in the
Component Overview (Figure 3.9-C, Line 14). The rank histogram next to the cluster
medoid shows that components in the cluster are very similar, as all boxes are quite
black, and it can be confirmed by looking at components directly (Figure 3.9-C). We
select a couple of results containing this component to compare their parameters. We
see that the parameters vary wildly (Figure 3.9-D), and the fetal heart signal was found
using long and short lags for either lag set with different weights. This, along with the
absence of other candidate components, suggests that we found the correct signal. A
medical doctor would be able to inspect the obtained fetal ECG wave patterns in detail
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Figure 3.8: Usage scenario on financial dataset, see Section 3.8.1 for details.

and determine whether or not it is healthy.

Looking at the values of the three parameter settings that did not produce results, we
can also form an initial hypothesis about the useful parameter subspace (Figure 3.9-E).
The weight b alone did not seem to play too much of a role as values span a wide range
(0.11–0.94) and we do have several successful results within that range. But an apparent
difference to those parameter settings is that both lag sets in failing results had lags that
were distributed over the whole range instead of sticking to either the short or long end.
This can be seen from Figure 3.9-D and E, as lags of the former appear blocked, whereas
they are more interweaved in the latter. Thus, when trying to find new parameters for
this dataset, we would steer clear of such lag sets.

3.9 Evaluation
To assess the usefulness of our visualization design, we conducted two interviews with
five TBSS experts external to the project. Our research questions were:

RQ1 What are advantages and disadvantages of TBSSvis in comparison to their current
tools?
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Figure 3.9: Usage scenario on medical dataset, see Section 3.8.2 for details. Note that
(D) and (E) show different parameter settings.

RQ2 Does TBSSvis in fact support the analysis tasks?

RQ3 What are possible improvements to TBSSvis?

We decided for an Expert Review [EY15] using interviews, as no comparable tool for a
quantitative evaluation exists and qualitative data allows much deeper insights. Two
interview cycles were conducted: In the first we gathered initial external feedback and
supporting evidence for our task abstraction, and in the second we verified that this
feedback was integrated accordingly. They lasted 2.5 hours and 1 hour, respectively.

3.9.1 Participants

Participants were the same for both interviews and previous collaborators of our co-
authors. They participated voluntarily without promised benefits, financial or other. All
are adults and not dependent on any author, be it financially, professionally or personally.

Our five experts (E1–E5) all hold a Ph.D. degree in mathematics or statistics. Four
obtained their Ph.D. with research in BSS somewhat recently, while the other researches
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BSS already for 10 years. Therefore, they more than fit the basic knowledge of BSS
and formal education in math/statistics requirements from our user characterization
(Section 3.6.1). Since participants applied (T)BSS on diverse datasets and collaborated
with various domain experts both in the context of (T)BSS (e.g., genome biology, cancer
research) as well as outside of it (e.g., ecology, neurology), we think they are very well
suited to answer our research questions. Although they cannot provide us with deep
data-related insights as they are not application domain experts, they are our primary
intended users and bring sufficient experience and a broad perspective to our research
questions around TBSS analysis and involved tasks. This helps us to keep TBSSvis
generic, yet effective, as was our design goal (Section 3.7).

No participant uses visual-interactive tools regularly. Their self-assessed experience in
visualization is “basic”, as E4 put it: “I only use what R has to offer, like ggplot and
the base graphics (...) scatterplots, time series plots, (...) box plots. I tend to stick with
these basic kinds of plots (...)”.

3.9.2 Methodology

The interviews were conducted and recorded via Zoom with explicit consent by partici-
pants.1 Two researchers were involved in each interview, one tasked with moderation
and one took notes. Participants used TBSSvis on their own machines and shared their
screen during usage. We used Zoom annotations to point out relevant parts of TBSSvis
when necessary.

Both sessions were structured the same. We compiled a text explanation with images of
TBSSvis, so that participants can familiarize themselves with it beforehand. The tutorial
document was sent to participants together with the consent form ahead of the interview.
Steps during the interview were as follows:

1. (Only in first session.) We conducted a structured interview about their background
and experiences with (T)BSS (15–30 minutes).

2. We gave participants a structured introduction to interactions and visualizations
in TBSSvis (up to 1–hour). The dataset used was synthetic and unfamiliar to
them. We asked participants to solve small tasks to practice what we explained.
We skipped these tasks when we either saw that they understood it, or when we
were short on time.

3. (Optional.) Participants were allowed to further use TBSSvis for some minutes on
their own.

1As of manuscript submission, the TU Wien has a Pilot Research Ethics Committee. Approaching it
for peer review of research with human participants is not required by the TU Wien, and its response
is non-binding. Therefore we do not provide an official ethics approval. Nonetheless, we believe we
conducted our research adhering to sufficient ethical standards.
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4. We asked participants to conduct an open analysis on the dataset used in Sec-
tion 3.5.1, which most have worked on in the past, and articulate their thoughts
and plans (“think aloud”). We pointed out parts of TBSSvis they did not use or
consider so far. This step took around 30–minutes.

5. We discussed tasks, visualizations, interactions and possible further improvements
in an unstructured fashion (15–30 minutes). Before we finished the session, we
encouraged participants to use TBSSvis more without our supervision.

To answer RQ2 we found it sufficient to check whether or not participants can interpret
our visualizations, and if visualizations show the necessary data in the right moment
to support their tasks. To do so, we analyzed the recorded video and notes after each
session. We looked for articulated suggestions, discussions, and situations where users
interacted with visualizations. These instances were transcribed and grouped by tasks
(Section 3.6.2). Feedback and possible issues of participants were noted, deduplicated,
and presented to our collaborators. Subsequent discussions then informed changes to the
first design, which we confirmed in the second interview.

The interview guide, tutorial documents, datasets, and our transcripts of the interviews
are available as supplementary material.

3.9.3 Expert Feedback

We describe evidence for our research questions in this section.

RQ1: Advantages and Disadvantages

Our participants agreed that TBSSvis has clear advantages compared to current tools
used and greatly improves the analysis process. E5 even said that TBSSvis is “an absolute
time saver” and “very useful for applied work.” The majority of them mentioned that it
is easier than in RStudio to compare components, matrices, and parameters. The same
outcomes can be achieved faster in TBSSvis and it provides useful new visualizations they
could not have in RStudio, such as the component overview/comparison. All participants
mentioned to enjoy playing with TBSSvis. Even in our limited time we saw indications
how TBSSvis can change the way they work. We observed E4 in the open session to
pursue an analysis process resembling binary search, toggling individual lags on and
off. Asked about it later, E4 mentioned to be “not sure if I’d have thought about [this
approach] just with RStudio.” E5 was very eager to get hold of TBSSvis, as the intention
was to recommend it to their students. E1 stated that better supported comparison tasks
give more structure to the analysis process, so all this suggests that TBSSvis allows new
or more streamlined analyses.

As for disadvantages, there is one very basic: RStudio allows more flexible and specialized
computations than TBSSvis. However, this was not explicitly mentioned by participants.
Some said it took time to put everything together, but all our participants managed to
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do so quickly. A few plots were difficult to understand at first, but after explanations it
was relatively easy to use for all participants. In addition, we observed some participants
having trouble with idioms that are common and popular in the visualization community,
such as PCPs and multiple linked views, which could be overcome by visual literacy
efforts.

RQ2: Supported Tasks

In this section, we discuss how TBSSvis supports analysis tasks (Section 3.6). We provide
quotes from participants to let them speak for themselves, but their sentiment is shared
by the majority and not an isolated opinion.

Identify used parameters (I1): The tabular overview (Figure 3.5-A) was considered “really
useful” (E2) and participants thought it “makes a lot of sense” (E4).

Identify unmixing matrix (I2): Participants could easily identify similar matrices and
dominant factors of components. Viewing involved time series (Figure 3.8-H) was
considered useful.

Identify cross-moment diagonality (I3): It is “something I don’t usually have the time
and energy to compute” (E5) and “very interesting” (E1), but also something they do
not regularly use for their analysis today.

Identify components (I4): Our participants found the added interactivity compared to
RStudio very useful.

Compare success (C1): They had no trouble with visual encodings, but participants
sometimes forgot that failure is an option.

Compare parameters (C2): While the interweaved lag histograms were easy to interpret,
it took some time for participants to realize that it is a regular histogram with hidden
bins (Figure 3.6). Similarity projections of parameters (Figure 3.5-B) were rarely used
by our participants. A possible explanation is because histograms show more data and
participants worked with only 5–7 parametrizations, they could use their working memory.
We believe their benefits would have become apparent with more parametrizations.

Compare unmixing matrices (C3): Some (E3–E5) mentioned that interpreting the MD-
Index for other than extreme values is not easy as it depends on the data dimensionality.
While both visualizations were used by all, some participants seemed to prefer the
MD-Index (E3, E4) over the factors (E2) to compare matrices.

Compare component sets (C4): Participants understood the slope graph (Figure 3.4)
easily and immediately saw its benefits. E3 mentioned that using it is “easier than
looking at a correlation matrix.” The projection view was in fact used to see how similar
ensemble members are. For this purpose participants also appreciated the component
overview (“you can very fast get an idea of how similar different methods are”, E3),
although most did not change the initial clustering parameter.
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Compare possible parameters (C5): After we introduced participants to individual views
and interactions, they learned quickly how to use it and found it useful and convenient.
They understood how and why to filter visualized lags, but were not sure about the
data-driven calendar-based approach, presumably because they currently analyze data
detached from any calendar. Participants appreciated the PCP with its dimensions,
even though they sometimes did not know right away how to interpret all of them: For
example, E2 asked what the eigenvalue metric means, what the optimal choice is, and if
lower or higher is better. Participants were also sometimes irritated by the number of
dimensions, as they depend on the outcome of the refined run.

RQ3: Possible Improvements

When asked about improvements to TBSSvis, we got responses mainly pertaining to
the parameter selection. E4 would prefer if the syntax to directly select lags matched
commands available in R. E2–E4 often ended up with an empty selection in the PCP
because they expected brushes to be combined with union instead of intersection. They
also want to select all filtered lags and remove all selected lags at once. Aside from
the lag selection improvements, more DOI functions would be appreciated. We added
one measure for periodicity [VYC05] following the suggestion of one participant. E5
suggested to support loading precomputed results, possibly from other TBSS methods.
E2 asked for more legends, explanations, and a stronger guidance degree in general. E1
suggested the ability to freely reorder components everywhere, and providing alternative
color palettes. With E1 we also discussed the option of showing correlations between
input data in the Input Visualization screen as another sanity check.

3.10 Reflection and Discussion

Reflecting on our findings and lessons learned during our design study with experts in
BSS, we claim that TBSSvis supports tasks involved with TBSS analysis (Section 3.6)
and encourages usage of TBSS in various application domains. Despite differences in
what an application domain considers interesting in latent dimensions (e.g., doctors might
search for specific wave patterns, while investors look for sudden and extreme changes),
many tasks are the same. We showed this transferability to financial and medical datasets
in Section 3.8. We developed and evaluated TBSSvis with TBSS experts, who are our
primary intended users. They worked with many domain experts in the past to apply
TBSS in their respective fields. Their practical experience with different use cases for
TBSS informed our visualization design (Section 3.7). Therefore, based on the mostly
positive feedback by our interview participants, we expect that TBSSvis can be useful in
many application domains.

In line with the design study methodology [SMM12], we used well known visualization
idioms and data mining algorithms, applied them in a new context and extended them
as necessary. As a consequence, individual parts of TBSSvis will be useful to other
visualization researchers and designers. For instance, a slope graph usually shows
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categorical data cases and their change of rank by line slope. We adapted it to time
series by encoding similarity in line thickness. In our user studies it was considered an
easy-to-understand visualization to visually compare sets of time series. The clustering
scheme (Section 3.7.3) is useful whenever members of sets should be clustered and set
membership must be taken into account. It works with any dissimilarity measure because
it is based on k-medoids. Set-typed data is prevalent [Als+16], so we expect this to be
useful to others.

3.10.1 Design Process

Following the recommendations of the data-users-tasks design triangle [MA14] our
proposed visualizations are close to what TBSS experts are used to and therefore quite
simple. We also did not include more advanced interactions than highlighting, filtering,
hovering, or brushing because TBSS experts come from a text-based software where even
these do not exist. Looking back, we think this was a good decision, as in our interviews
some participants had initially trouble using, e.g., the PCP.

What was difficult for us visualization researchers during the design is the domain-
independence of TBSS. Our goal, therefore, was to make TBSSvis applicable in a wide
range of domain-specific contexts, e.g., in medicine or finance. But both size and
complexity of the data vary considerably among the domains, as do the definitions of
“interesting” features and the location and role of TBSS in the data processing pipeline
[vLFR17]. Therefore, we opted in the end for simple interactions and generic/extendable
approaches, such as the use of DOI functions, to avoid a “lock-in” to any specific
application domain.

3.10.2 Limitations and Future Work

We discuss some limitations in our paper. Most study participants used the financial
dataset (Section 3.5.1) at some point in the past to test varying TBSS methods. Although
participants fit well to our user description (Section 3.6.1), they were not as intimately
familiar with the dataset as it is often the case in visualization-related evaluations. Had
this been the case, we may have found additional analysis goals and insights. Nevertheless,
we maintain that our study methodology and participant selection was sufficient and
appropriate to investigate how TBSSvis impacts involved tasks (Section 3.6.2). Partici-
pants used TBSSvis in both interviews for in total around 45 minutes on their own terms.
More time using it may have surfaced additional necessary analysis tasks or improvement
suggestions.

As part of our future work, we would like to integrate the suggested improvements by
our experts, support larger datasets and allow provision of custom DOI functions.
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3.11 Summary and Conclusion
We presented TBSSvis, a VA solution for TBSS. TBSS is in a way similar to PCA, in
that it can be used to analyze suitable datasets from any application domain, such as
biomedical analysis, finance, or civil engineering. Unlike PCA, TBSS properly accounts
for temporal correlation and requires complex tuning parameters. Because of these
parameter settings, TBSS analysis is inherently open-ended and exploratory as there are
no known insights to confirm. TBSSvis is based on a task abstraction and visualization
design that we developed together in a user-centered design process with TBSS experts.
We evaluated the final interactive prototype with five other TBSS experts, who did
not participate in the design process, by conducting two interviews. Feedback from
these shows that TBSSvis supports the actual workflow and combination of interactive
visualizations that facilitate the tasks involved in analyzing TBSS results—this process
was previously a laborious back-and-forth for which analysts had to manually program
static visualizations and data mining algorithms. TBSSvis also provides guidance to
facilitate the analysis of the data at hand and informed parameter selection, which was
previously mostly a guessing game.
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CHAPTER 4
Visual Parameter Optimization for

Spatial Blind Source Separation

The content of this chapter is published in:

Nikolaus Piccolotto, Markus Bögl, Christoph Muehlmann, Klaus Nordhausen, Peter Filzmoser,
Silvia Miksch. Visual Parameter Selection for Spatial Blind Source Separation. Computer
Graphics Forum, vol. 41, no. 3, 2022. DOI: 10.1111/cgf14530.

Context. In the following publication, we consider SBSS, particularly a non-stationary
model (Section 1.1.3), in the context of geochemical surveys and focus only on the
parameter selection. Overall, the BSS task abstraction from Chapter 3 applies here
too, and thus, we propose a characterization just for the parameter selection. Together
with our collaborators (Christoph Muehlmann, Klaus Nordhausen, and Peter Filzmoser)
and a geochemist (Clemens Reimann), we designed a VA prototype to support the
identified tasks. We evaluated the prototype heuristically with visualization experts and
in interviews with two SBSS experts. The best-received functionality was the automatic
regionalization of multivariate spatial data, which showed accurate borders between soil
types. Latent spatial dimensions identified with a parameter setting obtained by the
authors showed known and surprising patterns, particularly because our dataset did not
include the relevant chemical elements.

RQ’s Concerned: RQ1, RQ3.
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4. Visual Parameter Optimization for Spatial Blind Source Separation

4.1 Abstract
Analysis of spatial multivariate data, i.e., measurements at irregularly-spaced locations,
is a challenging topic in visualization and statistics alike. Such data are integral to
many domains, e.g., indicators of valuable minerals are measured for mine prospecting.
Popular analysis methods, like PCA, often by design do not account for the spatial nature
of the data. Thus they, together with their spatial variants, must be employed very
carefully. Clearly, it is preferable to use methods that were specifically designed for such
data, like spatial blind source separation (SBSS). However, SBSS requires two tuning
parameters, which are themselves complex spatial objects. Setting these parameters
involves navigating two large and interdependent parameter spaces, while also taking
into account prior knowledge of the physical reality represented by the data. To support
analysts in this process, we developed a visual analytics prototype. We evaluated it
with experts in visualization, SBSS, and geochemistry. Our evaluations show that our
interactive prototype allows to define complex and realistic parameter settings efficiently,
which was so far impractical. Settings identified by a non-expert led to remarkable and
surprising insights for a domain expert. Therefore, this paper presents important first
steps to enable the use of a promising analysis method for spatial multivariate data.

4.2 Introduction
Many domains work with multivariate quantitative measurements at different locations,
i.e., multivariate spatial data. Such data can stem from, e.g., geochemical analyses of soil
samples for the purpose of mine prospecting [Hal18] or investigations of environmental
pollution [Rei+14]. Depending on the specific goal and application, various tasks need
to be carried out on such a spatial dataset, like dimensionality reduction (DR), or
finding meaningful linear combinations of involved variables [BK12; Wac03]. Spatial
blind source separation (SBSS) [Nor+15; Bac+20; Mue21] is specifically designed for
multivariate spatial data and reveals linear combinations of such data. It brings various
advantages compared to alternative methods (Section 4.3.1), e.g., it keeps the well known
loading-scores scheme from principal component analysis and properly accounts for spatial
dependence due to its model-based approach. Therefore, latent dimensions identified
with SBSS often correspond to the physical reality where data was collected, making
it a superior analysis tool for spatial data. When irrelevant dimensions are discarded,
SBSS serves as DR method as well. SBSS has been successfully applied to a geochemical
dataset [Nor+15] and may be potentially used in any application domain that involves
multivariate quantitative measurements at different locations.

However, a challenge to the effective use of SBSS in practice are two spatial tuning
parameters that need to be set: A partition of the spatial domain into non-overlapping
regions, and a configuration of non-overlapping ring-shaped kernels (Figure 4.1, see
Section 4.3.1). The performance of SBSS depends largely on the choice of these tuning
parameters, but the size of the parameter space is overwhelming for analysts. Theoretical
guidelines about the optimal choice of tuning parameters exist (see Section 4.4.2), but
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they leave plenty of room for human judgement and automatic optimization does not
seem feasible. Further complicating the issue, the current tool of analysts is text-based
and not well suited to support them in their tasks.

(a) (b) (c) (d)

Figure 4.1: SBSS parameters illustrated on the same locations. A regionalization (a)
into a green and blue region. Two ring-shaped kernels (c) as applied to the red location.
Black locations are the red location’s neighbourhood. Our prototype allows setting
those parameters with direct manipulation by splitting a region along a polyline (b) and
choosing kernel radii (d).

As with many data analysis methods, the expertise of the human analyst is vital to SBSS
parameter selection. We believe that visual analytics (VA) [TC05; Kei+08] can enable the
effective use of SBSS in practice. VA pairs automatic data analysis with visual methods
to combine and thereby enhance the computer’s and human’s individual strengths. To
this end, we designed and developed interactive visualizations in collaboration with
SBSS experts, who are co-authors of this paper, and an expert in geochemistry. We
evaluated our approach with five visualization experts using a heuristic for value-driven
visualization [Wal+19] and one domain as well as two external SBSS experts.

Our contributions are the following:

• A task description for SBSS parameter selection,

• a visualization design to support parameter selection for SBSS, including novel and
existing interactions and visualizations,

• an evaluation of the design with experts in visualization, SBSS, and geochemistry.

Our contributions represent an important first step to enable the use of SBSS, a desirable
multivariate spatial analysis method. Blind source separation and geostatistics in general
and SBSS especially have been little explored in the visualization literature so far. In
the context of visual parameter analysis our scenario is notable because of spatial tuning
parameters.
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4.3 Related Work

In the following we describe spatial statistics (Section 4.3.1), visualizations for geospatial
point data (Section 4.3.2) and interactions with parameter spaces (Section 4.3.3) to
contextualize our approach.

4.3.1 Spatial Statistics

Geostatistics is concerned with the analysis of data that show a natural order in space.
Typically, many measurements at different sample locations are taken and the main
source of information for proper statistical analysis of such multivariate spatial data is
given by spatial dependence (cf. Tobler’s law). Geostatisticians are faced with a wide
variety of tasks, e.g., predicting the data at unobserved sample locations, dimensionality
reduction, or finding meaningful linear combinations [BK12; Wac03]. Proper modelling
of the spatial dependence is crucial for them. In the geostatistical framework it is
assumed that the spatial data at hand are generated by a family of p-variate random
vectors x(s) = (x1(s), . . . , xp(s))⊤ indexed by elements s of the so-called spatial domain
S ⊆ R2, e.g., longitude-latitude coordinates. Such a family of random vectors is referred
to as multivariate random field. Spatial dependence is characterized by the so-called
spatial covariance matrix which evaluates the covariance between the random field at
two different sample locations. Often, the semi-variogram (covariance of the difference
processes) is used in favor of the spatial covariance as it avoids the estimation of the mean
but is usually harder to interpret. Modeling of proper covariance matrix functionals is a
demanding task and usually simplified by further assumptions [GK15]. The second-order
stationary assumption yields that the spatial covariance is invariant under shifts, i.e., the
spatial covariance is the same for the whole field and only dependent on the distance
between two sample locations. In contrast, the spatial covariance function of a non-
stationary random field depends on specific locations and distances between locations
and is therefore usually much more demanding to model.

We will outline the advantages of SBSS over principal component analysis (PCA) and
its spatial variants [Jol86; Dem+13], because they are well known and widely used.
For an overview of geostatistical methods see, e.g., [BK12; Wac03]. The classical PCA
finds orthogonal directions of the data that maximize variance. It does so by the eigen-
decomposition of the covariance matrix Cov, yielding the orthogonal loadings matrix
U and uncorrelated principal components (scores) Ux. Two variants for spatial data
are considered in the literature, both use the same methodology as classical PCA, but
adapt Cov. The so-called geographically weighted PCA [FBC02; Har+15] uses spatial
information implicitly as it computes multiple Cov for each sample location based on
the neighbors. This leads to local PCA solutions and different loadings for each sample
location, which is very time-consuming to interpret. Another variant diagonalizes the
product of Cov and a measure of spatial dependence (Moran’s I) [Jom+08], which leads
to a trade-off between maximum spatial dependence and maximum marginal covariance in
components. It is not clear which properties in terms of spatial/marginal dependence these
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components actually show. Generally, the advantage of PCA are feasible interpretations
of the results in terms of the loading-scores scheme. However, PCA and both its spatial
variants lack a statistical model, therefore, is not clear which spatial and/or marginal
dependence properties the results actually have. SBSS, on the other hand, provides both
and can find physically meaningful processes which generated the data that also have
certain well-defined statistical properties.

In recent literature [Nor+15; Bac+20; Mue21] the methodology of blind source separation
(BSS) [CJ10] was combined with principles of stationary/non-stationary spatial data
analysis, resulting in spatial blind source separation (SBSS) for stationary and non-
stationary source separation (SNSS) for non-stationary spatial data. For simplicity, both
versions are referred to as SBSS in this paper. The SBSS framework is appealing as it
keeps the advantageous loading-scores interpretation scheme but finds the solution by
specifically accounting for spatial dependence, as it is mainly designed to find physically
meaningful components. Moreover, SBSS does not restrict the loadings matrix to be
orthogonal as PCA does. More meaningful components of a geochemical dataset were
found in comparison to PCA by a domain expert [Nor+15], and pre-processing the data
with SBSS in spatial prediction tasks simplifies the task but keeps the performance
compared to other methods [MNY20]. The SBSS loadings matrix W—often denoted as
unmixing matrix—is found by jointly diagonalizing Cov and a number of so-called local
covariance matrices LCov leading to the random field Wx(s) (latent field) consisting
of uncorrelated and spatially uncorrelated components. Local covariance matrices are
computed by a weighted average of the spatial covariance matrix for all pairs of sample
locations in a part of the spatial domain (regionalization, compare Figure 4.1a). The
weights are determined by a kernel which only accounts for sample location pairs that
are at least separated by rin and at most separated by rout (compare Figure 4.1c). A
regionalization is needed to account for non-stationarity of the random field, while the
kernels specify local proximity and attempt to measure spatial dependency. Thus, for
stationary data one region is sufficient and if there is no spatial dependency present the
kernels are not informative.

The crucial point which determines the performance of the SBSS methods is the choice of
LCov matrices or more precisely choosing a set of radii parameters (kernels) and a suitable
domain subdivision (regionalization). Theoretical guidelines hint that theses parameters
should be chosen such that the spatial dependence of the latent field components is as
different as possible. However, the practical usefulness of this statement is limited as the
latent field is unknown a-priori, which opens the door for parameter selection supported
by sophisticated visual analytic methods.

Spatial Data Analysis with Statistics and Visualization

After the influential work by Cleveland and McGill on graphical perception and dynamic
graphics in the 1980s, researchers started to apply these ideas to spatial data. Haslett
et al. [Has+91] used coordinated multiple views with interactive highlighting to find
anomalies in a geochemical dataset. The linked views in question included dynamic
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statistical graphics, such as a variogram cloud [Cre93], histograms, and a scatterplot
matrix, as well as geographic views (a map). GeoVISTA Studio [Gah+02], a visual
programming environment for spatial data analysis, extended this approach and combined
state-of-the-art visualizations with statistical methods for, e.g., classification. Demšar et
al. [DFC08] used similar dynamic graphics but to explore spatially varying parameters
of geographically weighted regression instead of the original spatial dataset. Dykes and
Brunsdon [DB07] suggested adjustments to well known statistical graphics to make them
work in a geographically weighted setting and for multiple spatial scales. The latter
was also a focus for Goodwin et al. [Goo+16], who, more recently, used local regression
coefficients to guide the analysis of a spatial dataset. To summarize, previous efforts
have been put into using visualization to enable spatial exploration of the outcome of
statistical methods. While that is future work we plan, this paper aims to enable the use
of a spatial analysis method in the first place.

4.3.2 Visualization of Geospatial Point Data

As we see it necessary to visualize multivariate 2D spatial point data to facilitate SBSS
parameter selection, the visualization of spatial point data is related to our work. Point
data is quite common in geospatial visualizations. When the interest is in a variable’s
value, dot maps are often used. In those, each point is represented by one visual mark,
like a circle. Other visual variables are used to encode the actual value, such as area
or color. Issues may occur, e.g., when the data distribution has long tails (common in
geochemistry), as a few extreme values then reduce perceptual accuracy for the majority
of data points. Zhou et al. proposed the point grid map [Zho+17], in which visual
marks are aligned on a grid such that directional relations are preserved. Typographic
properties, like font weight, as visual channels have been explored by Brath and Bassini
[BB17]. When there is little space for individual marks, pixel maps [Kei00] are an option.
However, these approaches distort the location of points, which is crucial information in
our case. Heatmaps and isocontours are employed when the number of points is too big
for individual marks. On irregular points, like in our case these do, however, require some
preprocessing as variable values need to be interpolated or resampled onto a regular grid.

There are also approaches to present point value without per-point marks on a map.
Turkay et al. [Tur+14] proposed attribute signatures, in which the analyst draws a path
through space and connected small multiple line charts show the value of variables along
the path. Their approach scales to many variables, but only shows a small portion of
variable values. Bouts et al. [Bou+16] warped the geographic space such that points
with similar value are moved near each other, an idea from DR. While an interesting
idea, we believe it would be unintuitive for our anticipated users.

Heatmaps are also useful to show the density of points, when individual marks tend to
overlap. In this case, some abstraction is necessary. When the points are located along a
road network, visual marks can be encoded along the streets with bristle maps [Kim+13].
If no natural regularization is available, it can be enforced with quadtrees [CM17], grids
[GB20] or merged areas [ML19]. Finally, Phoenixmap [Zha+21] uses concave hulls for

148



4.4. Background

each category and encodes density along the outline. However, point densities are less of
a concern for SBSS than point values.

4.3.3 Parameter Space Interactions

As we present interactive visualizations to set spatial parameters, we see interactive
visualizations for other parameter spaces as related work and discuss them here. When the
parameter space is multidimensional with a manageable amount of dimensions, parallel
coordinate plots (PCPs) are highly popular [JF16]. They show dimensions as parallel
axes and data points in the multidimensional space are encoded as polylines. Each
vertex coincides with an axis where the respective value of the dimension is. Common
interactions with PCPs are reordering and brushing. PCPs have also been explored
as an ideation tool to quickly create new design options [MW20]. If data points exist
in multiple sets, nested PCPs [Wan+17] are an option. PCPs were, in an immersive
environment, also combined with scatterplots into parallel planes [Bru+16]. Each plane
is a scatterplot of two variables, and polylines pass through these planes. This may help
when the number of dimensions grows, but they may at some point be too many. In this
case, users might still insist on sliders [Haz+20] or one could persuade them to work with
a dimensionally-reduced view [Orb+19].

PCPs are great for multidimensional non-spatial data and have, therefore, been applied
in combination with spatial data visualizations to enable multidimensional spatial data
analysis [Gah+02; DFC08; MH18; OR18]. But different approaches are needed when the
parameters have a spatial or temporal dimension. World Lines [Was+10] is an interaction
paradigm to steer a flooding simulation while it happens. At different points in time,
analysts may want to, e.g., place sand bags to protect an area from water, and explore
the parallel universes (with and without sand bags). It preserves this branching temporal
structure in the interface. In the spatial case it is popular to provide the analyst options,
e.g., in the form of a spreadsheet metaphor [JM00], where possible parameter settings
and their effect on the outcome are arranged next to each other. In such cases, the
analyst often interacts with the parameter space through a selection in the output space,
like in DreamLens [Mat+18]. A constrained editing mode that can optimize an objective
interactively, e.g., the flight distance of a model airplane [Ume+14], is another useful
interaction idiom. Finally, obtaining outputs by randomly precomputing large numbers
of parameter settings [Sed+14] may be the simplest approach, but gets less useful and
more computationally expensive the larger the parameter space is.

4.4 Background

4.4.1 Data Definition

As touched upon in Section 4.3.1, a multivariate spatial dataset in our case consists of
p-dimensional vectors x ∈ Rp at spatial locations S ⊆ R2. The vector at the i-th location
is denoted as x(si).
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A parameter setting (r, k) consists of a partition, or regionalization, r and a point
neighbourhood, or kernel, k. A kernel k is a set of non-overlapping rings with inner and
outer radius (0 ≤ cin < cout). The location of a kernel does not need to be set, as a kernel
will be evaluated for every location in each region. A regionalization r partitions the
spatial domain into a set of regions such that each location s ∈ S is contained in exactly
one region. Hence, there are neither overlaps between regions nor leftover locations.

A kernel k, applied to n locations si ∈ S, defines a symmetric n × n neighbourhood
matrix K. If for the distance dij between two locations si and sj and any ring in k
cin ≤ dij ≤ cout holds, the i-th and j-th row/column of K contain the value 1, 0 otherwise.

4.4.2 Considerations for Selecting Parameters

There are several requirements and considerations to take into account when selecting a
parameter setting (r, k) for SBSS.

Technical Requirements. From assumptions in SBSS theory follows, as already
touched upon in Section 4.4.1, that the regions in r must not overlap. To further simplify
finding regions, we require that their union must contain all locations in S. These are
easy to enforce automatically, but two other considerations require the human analyst.

Balance Region and Kernel Size. A guideline by our collaborators to reduce the
estimation error in the weighted average (Section 4.3.1) is that each region in r should
contain a reasonably large amount of locations. The same is true for a kernel k, which
should capture reasonably many locations in each region. Hence, r and k are not chosen
independently. If a region contains sparsely distributed locations, the kernel needs to be
bigger than for a denser region to capture the same number of locations. It clearly is also
not useful if, e.g., the inner radius of the kernel is bigger than a region, as no locations
would be captured. In practice, analysts should first select regions and kernels based on
the guidelines below and afterwards verify that no region/kernel is “too small,” based
on a threshold that is appropriate for the dataset and application. In our evaluations
(Section 4.7.1), participants initially set this threshold to 5% of data points. If too
small regions/kernels are identified, analysts may proceed regardless or merge/expand
regions/kernels, again following guidelines below.

Reconcile With Domain Knowledge. Another recommendation from SBSS theory
is that regions should be selected such that they enclose areas where variables behave,
or can be expected to behave, very differently from the other regions. This, however,
depends on the concrete dataset SBSS is applied to, and prior knowledge about the
physical reality it represents. As an example, if the measured variables are about air
quality, it may make sense to distinguish between urban and rural regions in the data,
but in case the measured variables are elements in soil, different soil types could guide
the regionalization. Similarly, a kernel should be selected such that it encapsulates
the spatial dependence of different latent processes in the dataset, i.e., a kernel should
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cover the distance within which a process may be noticeable. Such a latent process
might be, e.g., emissions from driving cars, which influence air quality up to a distance
of a few hundred meters [LCX19]. In the same way as a regionalization, the kernel
parameter also clearly requires the domain knowledge of the analyst. Such considerations
are difficult to quantify, but may be supported by others that are easier to (data-driven
considerations). For instance, which latent processes can be expected in the dataset
depends on which variables were measured and how far apart. The spatial dependence of
a variable, important for kernel selection, can be expressed with a variogram [Cre93]. It
is possible to automatically partition a spatial domain [Guo08], which could be an initial
suggestion for this complex parameter.

To summarize, SBSS parameter selection is characterized by a small set of rules that can
be easily verified automatically, and a larger fuzzier set of guidelines that require human
reasoning and domain knowledge. How our visual analytics prototype supports both is
the topic of Section 4.6.

4.5 Task Description

We describe users and their tasks using the design triangle by Miksch and Aigner [MA14].
The data is described in Section 4.4.1.

Users. As SBSS is a relatively novel statistical method, our users are for now SBSS
experts who want to investigate their method on real data instead of the usual simulation
studies. While SBSS experts have formal education in mathematics/statistics and are
knowledgeable in spatial statistics, we paid attention that this is not a requirement for
our visual designs. We anticipate that as interest in SBSS grows in the future, domain
experts without such qualifications will require our interactive visualizations, too. Our
users’ main tool is RStudio, an integrated development environment (IDE) for R [R C23],
a language for statistical computing. RStudio is text-based and allocates one part of its
interface to show a non-interactive visualization (which has to be programmed by the
user with, e.g., ggplot2 [Wic16]).

Tasks. User tasks emerge from parameter setting considerations described earlier
(Section 4.4.2). First and foremost, users need to be able to quickly and efficiently enter
parameter settings (T1), also complex ones. As can easily be imagined, this is not possible
with a text interface. For this reason, users currently favor parameter settings that can
be easily described with code, such as regionalizations that are grids or regular slices
in a particular direction, although these may not correspond to the spatial reality in
the data. Furthermore, they have to balance region and kernel size (T2) and reconcile
possible regions and kernels with their domain knowledge (T3). The former is currently
difficult as regions and kernels are selected without a direct manipulation paradigm, and
the latter because only a single visualization is visible at a time.
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Figure 4.2: Screenshot of our prototype (Colorado dataset). It shows the toolbar including
legends (B) and a filter for number of locations (A), visualizations supporting data-driven
considerations (C and D, Section 4.6.4), precomputed regionalizations and kernels (E,
Section 4.6.2), variables as small multiples (F, Section 4.6.3), an interactive map (G,
Section 4.6.1), the analyst’s current selection (H) and past selections (I).

We obtained the necessary tasks in a user-centered design process with experts in
SBSS and geostatistics. We also asked an expert in geochemistry for feedback on our
visualizations during the design phase. He underlined the importance of task T1, that
the system should be highly interactive and allow to produce many parameter settings in
little time.

4.6 Visualizations and Interactions

In this section we describe the interactive visualizations of our prototype (Figure 4.2) and
relate them to the task description (Section 4.5). We implemented those as part of a client-
server architecture with the client being a JavaScript application and the server written
in R. The latter is mainly to use the SpatialBSS R package [MNV21] that provides
necessary functions. Both client and server carry out time-intensive computations once
and re-use results, thereby allowing fluid interactions. The software is available online
[Pic21]. We describe and show the design with changes made after our evaluations. We
resized some elements and removed the guidance previously encoded in the blue colorscale
(cf. Section 4.6.2).
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4.6.1 Interactive Map (T1, T2, T3)

The SBSS parameters—regions and kernels—are complex spatial objects. It is time-
intensive, error-prone, and frustrating to define these in an indirect manner by textual
commands. A direct manipulation interface for both of them seemed therefore promising
for task T1. We achieve this in an interactive map, which supports the usual pan and
zoom interactions. Not only can the analyst define regions and kernels directly in their
spatial context (tasks T2, T3), with an interactive map it is also possible for us to show
supporting data to guide the parameter selection (task T3).

Notably the map has two modes. One is the “precomputed” mode, which allows to view
precomputed guidance suggestions (Section 4.6.2). If the analyst wants to build their
own parameter setting or modify a precomputed one, they need to switch to the “custom”
mode. In this mode they can split a region in two, merge two adjacent regions, and define
a kernel directly in the map (Section 4.6.1). Any precomputed setting can be copied to
the “custom” mode for modification.

Visualization of Regions and Kernels (T2)

As per common convention in cartography, we show regions as polygons. They are not
filled to not occlude the underlying map tiles, which provide important information.

We show the current kernel configuration as shaded concentric circles at the geometric
center of each region. This is for two reasons: First, a single kernel configuration is used
for all regions, which was an acceptable simplification to our collaborators. Hence we
may copy it as soon as a new region is defined. Second, there is no single center for a
kernel, as it will be evaluated at all locations. Shown at a region’s center we can expect
that analysts will be able to reason well about a kernel and region’s relative size (task
T2). We use the continuity Gestalt principle to encode which region a kernel belongs to
and crop the rings by the region’s boundary.

Direct Manipulation of Regions and Kernels (T1)

At first, the interactive map just shows the bounding box of all locations, and neither
locations nor variables, to not clutter it from the start. This is important because we do
not know in advance how many locations the dataset contains.

In discussions with our collaborators we learned that they expect regions to be coarse
and few. This is partly because a region must not be too small (task T2, Section 4.4.2).
As we further required all locations to be assigned to a region, a regionalization is shaped
by splitting an existing region in two along a user-defined border, which is provided by
drawing a polyline through a region on the map (Figure 4.1b). To merge adjacent regions
it is sufficient to select them. This allows to quickly define also complex regions, while
maintaining correctness (task T1).

A kernel configuration is a set of concentric rings. They are defined as follows. First,
the analyst picks a center point anywhere on the map. From there, the analyst has to
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choose alternatingly the outer and inner radius of a ring (Figure 4.1d). The process
is terminated and kernel definition complete when the kernel selection mode is turned
off. With this direct manipulation approach and supporting views it is easily noticeable
when there are overlapping kernels. Hence, we support kernel definitions in a quick and
correct way (task T1). Please refer to the video in the supplemental material (linked in
the appendix) for all visual feedback we provide.

Additional Data (T3)

Several additional spatial objects may be shown on the map to support selection of the
parameters (task T3).

Custom Annotations. Our approach offers the ability for custom map annotations.
The analyst may provide and overlay any GeoJSON feature collection [But+16]. This way,
their domain knowledge can be externalized and visually encoded to support parameter
selection. In a geochemical setting, it could be a soil atlas [HMZ09]. The cursor then
snaps to the boundary of features, further simplifying the process.

Locations and Variables. Analysts may choose to show just the locations in the map
encoded as points. This is a compromise between no locations and showing a spatial
variable. They may, however, also overlay any single spatial variable of the dataset
instead. These are encoded in the same way as in the small multiples explained in
Section 4.6.3: A colored triangle of differing size shows the sextile (1/6 or 16.67% of the
data).

Base Layer. Finally, we provide several base layers of the map to choose from. The
default is OpenStreetMap and OpenTopo, Thunderforest Landscape [Gra] and Satellite
are also available. We expect that these cover most commonly needed information as
they provide layers optimized for both rural/natural and urban areas.

4.6.2 Guidance (T1, T2, T3)

The set of possible regionalizations and kernel definitions is vast and it is difficult for
analysts that lack deep domain knowledge, to find a starting point. They do not know
what possible parameter settings look like and how they compare. Hence, they need
guidance [Cen+17]. We provide orienting and directing guidance in the following way
(Figure 4.2, E). Possible regionalizations are precomputed, using a current strategy of
analysts (grid-based) and one that matches SBSS experts’ recommendations (covariance-
based). Similarly, possible kernel settings are precomputed. We show these as suggestions
(directing, Section 4.6.2) and color-code them by quantification measures (orienting,
Section 4.6.2).
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Figure 4.3: Structure of the visualization for kernels (Figure 4.2, E). Each kernel is a
rectangle representing one part of a largest kernel.

Finding Regions and Kernels

A regionalization is visualized as choropleth map, with univariate color scales as defined
in Section 4.6.2. We use two strategies to provide suggestions for regionalizations.

Grid-based Regionalization. For lack of better tooling, grids are currently a popular
setting for the regionalization parameter. These can be quickly precomputed in a
straightforward manner. We use square n × n grids with n from 1 to a user-defined
granularity.

Covariance-based Regionalization. Recall that in Section 4.4.2 we described that
regions should be selected such that the variable interactions are different. When we
consider the covariance of variables as a measure, we can compute suggestions for a
regionalization automatically. We first convert the point dataset to a polygon dataset
using a Voronoi diagram. Then we group adjacent similar Voronoi cells using the
REDCAP regionalization algorithm [Guo08]. In REDCAP’s terms, we use distedge as
edge length and hgr as region heterogenity:

distedge(si, sj) = ∥x(si)x(si)T − x(sj)x(sj)T ∥F
hgr =

∑
∥(x(si)− xr)(x(si)− xr)T −Covr∥F

i, j are indices of locations, Covr is the sample covariance matrix of all locations in the
region and xr the means of variables in the region. ∥ · ∥F denotes the Frobenius norm.
With these hyperparameters for REDCAP, we gain regionalizations for a user-defined
number of regions. This approach was very successful in our evaluation (Section 4.7).

Kernels. For kernel suggestions we consider only kernels with a single ring, as the
rings have no influence on each other. We obtain smaller rings by a recursive binary
partition of a largest ring. To visualize the precomputed rings, we show them as stacked
bars (Figure 4.3), where the Y axis encodes ring thickness and the X axis distance. The
left edge of a bar marks the inner radius of a ring, the right edge the outer radius. The
bars are colored according to a color scale described in Section 4.6.2. Single rings can be
selected to be viewed on the map, but any combination of rings may be defined manually.
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Quantifying Regions and Kernels

Number of Locations. For analysts it is important to know how many locations are
contained in a region and captured by a kernel (Section 4.4.2). Hence, for any region
in a regionalization, we simply count the number of locations in it. For a kernel in a
region, we compute the neighbourhood matrix K (Section 4.4.1) and define the number
of locations captured by the kernel as the mean of column sums in K. As one column in
K contains the neighbourhood for a single location defined by a kernel, it is the average
neighbourhood size. This metric is encoded in the orange color scale. It may be used to
inform, e.g., if a region may be split further or if two adjacent regions should be merged
(tasks T2, T3).

Insufficient Number of Locations. A pattern of diagonal stripes appears when
the number of locations in a region or kernel neighbourhood is smaller than a custom
threshold. This way, analysts can easily detect too small regions or kernels (task T2).

Region Covariance Difference. In Section 4.4.2 we outlined that regions should
be selected such that the variable interactions are different. One way to describe those
are by the sample covariance matrix Covr of all x(si) in a region. The difference of
each Covr to the global sample covariance matrix Cov can then the quantified by the
Frobenius norm: ∥Cov−Covr∥F . Higher values indicate more locally different variable
interactions. This metric is encoded in the green color scale. This should be used to
identify as many as much locally different regions as possible, as long as they are also
reasonable for a domain expert (task T3).

Eigenvalue Difference. SBSS theory states that high quality recovering of the latent
field is achieved if the eigenvalues of the local covariance matrices (Section 4.3.2) evaluated
on the latent field are as different as possible [Bac+20; Mue21]. Hence, a promising
parameter setting maximizes the difference between these eigenvalues. Unfortunately, the
latent field is unknown beforehand. However, in this spirit, our collaborators suggested
that the eigenvalue difference of the local covariance matrices evaluated on the input data
might be a useful metric to suggest the latent field recovery quality of a parameter setting.
In the version of the prototype we used for our evaluations (Section 4.7), this metric was
encoded in a blue color scale. As it was not well accepted among study participants,
probably due to its unreliability, we removed it from the final design presented in this
paper (Figure 4.2).

4.6.3 Summary of One Spatial Variable (T1)

We decided to show all involved variables separately to the interactive map as small
multiples (Figure 4.2, F). Following parameter selection considerations in Section 4.4.2,
analysts need to identify areas of the spatial domain in which many variables have
consistent values, which makes it necessary to show all variables at once. This is
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effectively a manual regionalization (Section 4.6.2) and the small multiples simultaneously
provide an overview of all variables.

A single spatial variable is summarized by aggregating it to a grid. The size of the grid
can be interactively changed by the analyst (semantic zoom). For each grid cell, the
median value of the variable is encoded by a triangle symbol showing the percentile it
falls in (Figure 4.2, B). This design was preferred by our collaborators over a heatmap or
isocontours. We divide the data in sextiles (1/6 or 16.67% of the data). The lower three
sextiles are gray and upside-down triangles, the upper three are black and upright triangles.
This double encoding is redundant, but allows to perceive contiguous regions due to
the shared color and also intuitively indicates which percentiles are shown: Downward-
pointing triangles show lower values, upward-pointing triangles higher values. As for
our collaborators the extreme values are of interest, values away from the 3rd and 4th
sextiles are shown with bigger triangles. The relative sizes were chosen based on [Den96].

4.6.4 Distance Distribution and Variograms (T3)

We show two plots to support the data-driven selection considerations (Section 4.4.2).

Distance Distribution. To know how far away locations are from each other we show
a density plot of all pairwise distances (Figure 4.2, C). From that an analyst can easily
see if the spatial scale of the dataset is on hundreds of meters or thousands of kilometers.
This is in addition to the interactive map (Section 4.6.1).

Variograms. The empirical variogram is an established plot in spatial statistics [Cre93,
Chapter 2] that shows the spatial dependence of a variable, i.e., how its value changes
with increased distance. With the (binned) distance on the X axis, the Y axis encodes the
average squared difference between any point pair whose distance falls in that particular
bin. We combine variograms of all variables in the dataset by superpositioning them
(Figure 4.2, D). In Section 4.4.2 we explained that kernels can be selected such that they
encapsulate dissimilar spatial behavior of variables. To support this assessment, we add
a grayscale-coded square on top of each bin that encodes the variance. Hence, darker
squares point to bins with more dissimilar spatial behavior. When the analyst selects a
kernel, its current extent is interactively shown in the variogram view.

4.7 Evaluation

In previous sections we described users and their tasks (Section 4.5) and presented our
interactive visualizations (Section 4.6). In this section we describe our efforts to evaluate
these visualizations. We were interested in the following research questions:

• (RQ1) Do our interactive visualizations enable more efficient parameter selection?
I.e., can analysts enter complex settings in less time?
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• (RQ2) Do our interactive visualizations enable more effective parameter selection?
I.e., do they allow analysts to enter previously-impractical settings?

• (RQ3) Is our designed guidance effective, i.e., is it semantically meaningful and
accepted by users?

Evaluations were carried out with three groups of participants. We presented our proto-
type to five visualization experts (Section 4.7.2), who judged its value using a questionnaire
[Wal+19]. This is to confirm that we did not make gross mistakes in the visualization
design phase. After that, we invited two external SBSS experts (Section 4.7.1), who
did not take part in the design phase, to a user study. Here we were interested in how
our prototype can improve their parameter selection process. Finally, we showed the
covariance-based regionalization guidance (Section 4.6.2) and latent dimensions (output
from a parameter setting made by the second author) to an expert in geochemistry
(Section 4.7.3), to judge how meaningful suggested partitions and acquired results are.

Hence, we combined quantitative and qualitative approaches. However, we did not deem
it useful to compare RStudio and our visualizations in a quantitative way involving time
and error. The two are based on completely different interaction paradigms and provide
wildly differing levels of support to the analyst. From the discussion with SE2 we think
we were right in that decision.

Datasets Used in Evaluation. For visualization experts we exclusively used the
GEMAS [Rei+14] dataset (2 108 locations / 18 variables), because it covers most of
Europe and we expected it therefore to be somewhat relatable. SBSS experts preferred
the Kola moss [Rei+98] (594 / 31) and Colorado [SEK10] dataset (960 / 27). For guidance
judgement we again used the GEMAS and Kola moss datasets, because the domain
expert is one author of them and intimately familiar. All datasets are publicly available.

4.7.1 SBSS Experts

Regarding our research questions of efficiency and effectivity, we interviewed two people
who work a lot in RStudio and are SBSS experts. We introduced them (SE1 and SE2),
who have at least one publication on SBSS, to our visualizations. They used the prototype
on a dataset they chose. These were different datasets. We asked them to produce a few
parameter settings using our prototype. We did not provide any requirements to this
task, to not constrain their exploration and ideas. Of course, we helped them if they did
not remember visual encodings or interactions. We asked them to vocalize their plans
and intentions (“think aloud”). After they were done or the time ran out, we discussed
the visualizations and interactions in an unstructured fashion. The sessions took around
75 minutes each. SE2 even provided us beforehand parameter settings they made in
RStudio.

In the beginning, SE1 had difficulties using the prototype. Especially the distinction
between the “precomputed” view-only map mode and the “custom” editable mode was
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confusing, as both looked similar but edit controls were missing in one of them. However,
after 15–20 minutes, SE1’s interactions became quite fluid. SE2 had no problems from
the start. This suggests that there is little training time necessary to use our prototype.

Both experts, being knowledgeable about SBSS but not the application domain of
geochemistry, relied in their selection process heavily on the guidance of our prototype.

SE1 browsed through many suggestions, but had trouble to commit to any particular
setting. It is possible that we provided too many options, or at least should not have
shown them all at once. For lack of better judgement, SE1 settled for four parameter
settings from our guidance system, with minor modifications.

SE2 went about it in a more structured way, but produced only a single setting in the
end. At first SE2 also mostly browsed through (grid-based) suggestions and inspected
them in the interactive map. SE2 also paid attention to the colormaps of the suggestions,
although more on the orange and green one. At some point SE2 decided to find the most
locally different region and clicked through grid-based regionalizations. These tended
to show regions in the center as darkest, to confirm this SE2 inspected the variable
summaries. There SE2 noticed that many variables had consistently similar values in
the top right square and in the left-most column of the map. We pointed out that this
observation matches the covariance-based regionalizations, and SE2 used this guidance
more from that point on. SE2 combined the covariance-based maps and the variable
summaries to decide for one regionalization, specifically the most fine-grained one that
did not split the regions of interest identified earlier. Then a process of fine-tuning began,
where SE2 split and merged regions to distribute locations evenly, while keeping as much
of the baseline regionalization intact as possible. Finally, kernels were selected with
support of the variograms. In the end, SE2 selected a parameter setting with much
more complex regions than in prior attempts made using RStudio. Judging from our
conversations with the domain expert (Section 4.7.3), this setting is likely more realistic,
too.

While we had plenty of time with SE2, it was not the case with SE1, with whom we
were not able to discuss drawbacks and benefits deeply. SE1 raised no improvement
suggestions for the prototype, but mentioned that the purpose of the Eigenvalue guidance
in the blue colormap is not clear. This was reinforced by SE2, who also did not look
at it that much. We believe that this is because it relates only to the output and its
impact on that is unclear. Therefore, this guidance is unreliable and we removed it in the
final prototype. Regarding using our prototype vs. RStudio, SE1 mentioned that “the
precomputations are extremely useful.” This was also echoed by SE2, but suggested that
it would have been nice if similar suggestions existed for the kernel parameter, too. SE2
also noted that being able to see the original variables would have been useful. This is
related to a technical detail with geochemical data: Since these are measured as part of a
whole (e.g., mg/kg in a soil sample), it is necessary to apply some data transformations
first [Ait82] and our prototype showed variables only after these transformations. We
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Component Mean Std.dev.

Insight 6.35 0.98
Time 6.52 0.65
Essence 6.05 0.89
Confidence 6.00 2.98

Table 4.1: Results of the ICE-T evaluation with visualization experts.

suggested SE2 to recreate one of their existing parameter settings with our prototype.
However, SE2 declined with an interesting answer: It would “probably be faster” but
pointless, as they would “very likely not be interested in choosing the same settings,”
given the fewer constraints and additional supporting views of our prototype. We take
this as strong evidence for our initial assumption, that providing tailored interactive
visualizations change the selection process, and for our first two research questions. As
both experts made use of our guidance suggestions, we see this as supporting evidence
also for our third research question, that our guidance is effective.

4.7.2 Visualization Experts

We asked visualization experts to judge our visualization design. While good design
does not automatically entail a more efficient/effective selection process, bad design most
likely prohibits it. We used the heuristic value of visualization approach by Wall et
al. [Wal+19] (ICE-T), because it is a good compromise between insight gained for us
and time required for participants. We introduced five visualization experts from two
universities, who are Ph.D. students or postdocs in visualization, to the SBSS problem
domain and our prototype (Section 4.6). Five experts are sufficient according to the
power analysis by Wall et al. The experts were allowed to use the prototype on their
own and ask as many questions as necessary, until they felt confident enough to fill out
the questionnaire. We discussed the terminology beforehand. The sessions took around
one hour each and were conducted solely by the first author. The results are depicted in
Table 5.1.

It can be seen that our approach was rated very well across ICE-T components. For
our purpose, we see Time and Insight, in that order, as the most important components,
which also were rated highest on average. Wall et al. [Wal+19] state that a visualization
design can be considered successful if the mean score is greater than five, which we clearly
achieved. We provide the raw questionnaire results as supplementary material.

However, the standard deviation in the Confidence component is very high. The reason
for this is that two out of four statements were often either deemed not applicable or
rated badly by our participants. These pertain to facilitating learning more broadly about
the data domain and helping to understand data quality. The former is not important to
our prototype, as it is designed to support parameter selection only, and not general data
analysis capabilities. The latter partly is: SBSS requires complete data, therefore good
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data quality can be seen as a precondition. On the other hand, duplicate or outlier entries
could still exist, but would be invisible due to occlusion and the percentile summary. This
could be solved, e.g., by a layout that avoids occlusion, by annotations when occlusion
happens or by highlighting symbols if their value is greater than a user-defined number
of standard deviations.

Several points were raised in the open discussion. The variogram was unknown to all
participants, but thought to be a good way to show spatial dependence of variables. That
there should be more space for the map, also because the other views could be shown
conditionally, was raised by two participants. Our triangle symbols were deemed both
intuitive and not ideal because it is not easy to see where the center is. Participants also
suggested to make it possible to analyze custom groups of variables.

4.7.3 Domain Expert

We showed the automatic covariance-based regionalizations for the GEMAS dataset
(Figure 4.4b) to the geochemistry expert. He immediately recognized geologically and,
therefore, geochemically distinct areas that are characterized by their soil (Figure 4.4a),
such as eastern Spain (Calcisol), Central Europe (Cambisol), Southern Baltic region
(Albeluvisol), or the Nordic countries (Podzol). He further mentioned that such an
automatic regionalization based on multivariate data would likely be helpful for geologists
and geographers as an initial estimation of homogeneous regions. This is often necessary,
e.g., because non-spatial methods, like PCA, must not be used on inhomogeneous data
[Rei+08, Chapter 14]. The domain expert was not able to reconcile the automatic
regionalizations with known processes in the Kola moss dataset. In our opinion, even
this negative assessment is useful, as it suggests a stationary SBSS setting (i.e., no
regionalization required). Overall, we take this as evidence that our regionalization
suggestions can reflect real processes and be a starting point even for domain experts.

To further test the applicability of our interactive visualizations, the second author used
them to define a parameter setting on the GEMAS dataset. This is difficult because of
the dataset’s complexity (2 108 locations covering Europe, 18 variables), especially for
someone unfamiliar with the application domain. Yet it took him only a few minutes.
We then plotted static maps of the resulting latent components and showed them to the
geochemistry expert, who noticed familiar, surprising and unknown patterns. Unexpected
was a structure in the area of North France, Belgium and Germany (Figure 4.5a). The
expert speculated it is caused by sediments, but then the pattern would extend east-
instead of westwards. While there are possible explanations, like population density,
more research is necessary to confirm them. More unexpected patterns were identified
near known sites of mining activity in Seville (Rio Tinto) and Almadén (Figure 4.5b).
This was insofar surprising to the expert as Almadén is a mercury deposit and Rio Tinto
copper/zinc, yet neither mercury nor copper were part of the dataset we used. The expert
generally was impressed that a lot of known processes, like historic geological events (e.g.,
Oslo rift, glacial period), were so well visible, even though our dataset did not include the
“most interesting elements.” Revealing the same interesting patterns with fewer variables
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(a) Main soil types in Europe. Reproduced from
[HMZ09].

(b) 8 automatic regions for the
GEMAS dataset.

Figure 4.4: Comparison of a) a map of soil types in Europe and b) our regionalization
guidance. While not perfect, as it is limited here to 8 regions and the dataset captures
many more latent processes than just soil type, our guidance suggests similar boundaries,
such as East/West Spain or North/South Baltic region.

has monetary implications in geochemistry, as some elements are expensive to measure
within useful detection limits (and could be excluded). These insights show how useful
SBSS can be for multivariate analysis of spatial data, and how accessible they became to
novice users with our interactive visualizations.

4.7.4 Limitations and Discussion

Being a research prototype, our VA approach does have its limitations (see also Sec-
tion 4.7.1 and Section 4.7.2). The computational demand increases with the number
of locations in the dataset (O(n2) per regionalization with REDCAP), hence the pre-
computations may take several minutes. Further, any region currently must be a single
contiguous area without holes.

Our research questions pertained to the efficiency (RQ1) and effectivity (RQ2) of param-
eter settings with our interactive visualizations and the effectiveness of the guidance we
designed (RQ3). To answer RQ1 and RQ2 we performed, on the one hand, a heuristic
evaluation with visualization experts. Our prototype scored particularly well in the
Time component, as participants strongly agreed that it provides efficient interactions.
Visualizations were also deemed appropriate, except to find data quality issues. The
latter is a minor issue as, in practice, SBSS expects a properly preprocessed dataset. On
the other hand, we introduced our prototype to two external SBSS experts, who used
it to select parameters on a dataset of their choice. Little training time was necessary
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(a) Unidentified process causes pattern in
France and Germany.

(b) Patterns near mercury (top circle) and
copper mines.

Figure 4.5: Insights into the GEMAS dataset with SBSS. Images show high (crosses)
and low (circles) values of a latent dimension [Rei+08]. Zoom, crop and red annotation
by the authors.

and the visualizations and guidance suggestions were considered useful. One expert
stressed how our prototype allows to set previously practically impossible parameter
settings. Therefore, we think RQ1 and RQ2 can be answered positively. Our third
research question (RQ3) was about the effectiveness of our guidance. The availability
of regionalization suggestions was considered very useful by SBSS experts. A novice in
geochemistry (the second author) was quickly able to select parameter settings that lead
to surprising insights for a domain expert. We therefore think that also this research
question can be answered positively.

4.8 Conclusion

SBSS is a desirable tool for multivariate spatial data analysis. It requires setting complex
spatial tuning parameters: a partition of the spatial domain (regionalization) and a
spatial neighbourhood configuration (kernels). In this paper, we presented a visual-
interactive prototype that supports and guides analysts in finding appropate settings,
thereby rendering it more usable in practice. We developed it in close collaboration
with experts in SBSS, geostatistics, and geochemistry. The prototype contains several
interactive capabilities to modify parameters and guiding visualizations. We evaluated
the prototype quantitatively using a heuristic evaluation with five visualization experts
and qualitatively with two external SBSS experts, who were not part of the design process,
and a geochemistry expert. Our evaluations show that
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• our visualizations are appropriate and the prototype allows highly interactive
exploration of possible parameter settings,

• our prototype allows SBSS and visualization experts to select parameters more
flexibly, efficiently, and realistically,

• our guidance suggestions can be semantically meaningful to a domain expert and
are considered helpful by SBSS experts.

During this study we discovered partial results that we think can be transferred between
the domains of geostatistics, geochemstriy, and visual analytics for mutual benefit. For
instance, the ideas of variograms and regionalizations rarely occur in visual analytics liter-
ature for spatial data. Flexible and interactive variograms [Has+91] and regionalizations
are useful for exploratory analysis of spatial data, which in turn can support geostatistical
modeling. It would be interesting to further explore, how these can be combined with
state-of-the-art interactive visualizations. Similarly, automatic regionalizations may be
useful for geochemists, as they suggest homogeneous areas from multivariate data, which
are interesting by themselves and can be analyzed by other methods, such as PCA. To
further improve upon the concept of regionalizations it would be beneficial to make them
uncertainty-aware, as we learned that region boundaries in practice may not be crisp
and clear-cut when multiple influencing processes overlap.

Our contributions present a first step towards the effective practical use of SBSS. In the
future we could look into more quantitative approaches at several stages of the design
study, e.g., comparing SBSS results obtained with our prototype to a ground truth,
investigating an objective-oriented parameter selection approach, or conduct experiments
to find out which visualizations are best for the tasks we identified. Further topics
arise as a result from our focus on visual-interactive parameter selection. Because
several parameter settings are tried in practice, it raises the question how common visual
parameter analysis tasks, like sensitivity analysis, can be possible with spatial parameters.
Finally, it would be beneficial if the exploration of multiple SBSS results are supported
by interactive visualizations.

Acknowledgements
This work was funded by the Austrian Science Fund (FWF) under grant P31881-N32.
We sincerely thank Clemens Reimann for his support and advice. We also thank Helwig
Hauser and our anonymous study participants for their time and valuable discussions.

4.9 Bibliography

[Ait82] J. Aitchison. “The Statistical Analysis of Compositional Data”. In: Journal
of the Royal Statistical Society 44.2 (1982), pp. 139–177 (cit. on p. 159).

164



4.9. Bibliography

[Bac+20] F. Bachoc, M. G. Genton, K. Nordhausen, A. Ruiz-Gazen, and J. Virta.
“Spatial Blind Source Separation”. In: Biometrika 107.3 (2020), pp. 627–646.
doi: 10.1093/biomet/asz079 (cit. on pp. 144, 147, 156).

[BK12] T. Bailey and W. Krzanowski. “An Overview of Approaches to the Analysis
and Modelling of Multivariate Geostatistical Data”. In: Mathematical Geo-
sciences 44 (2012), pp. 381–393. doi: 10.1007/s11004-011-9360-7
(cit. on pp. 144, 146).

[Bou+16] Q. W. Bouts, T. Dwyer, J. Dykes, B. Speckmann, S. Goodwin, N. H. Riche,
S. Carpendale, and A. Liebman. “Visual Encoding of Dissimilarity Data
via Topology-Preserving Map Deformation”. In: IEEE Transactions on
Visualization and Computer Graphics 22.9 (2016), pp. 2200–2213. doi:
10.1109/tvcg.2015.2500225 (cit. on p. 148).

[BB17] R. Brath and E. Banissi. “Multivariate Label-Based Thematic Maps”. In:
International Journal of Cartography 3.1 (2017), pp. 45–60. doi: 10.1080/
23729333.2017.1301346 (cit. on p. 148).

[Bru+16] N. Brunhart-Lupo, B. W. Bush, K. Gruchalla, and S. Smith. “Simulation
Exploration through Immersive Parallel Planes”. In: 2016 Workshop on
Immersive Analytics (IA). 2016, pp. 19–24. doi: 10.1109/immersive.
2016.7932377 (cit. on p. 149).

[But+16] H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, and T. Schaub. The
GeoJSON Format. Rfc7946. RFC Editor, 2016, Rfc7946. doi: 10.17487/
rfc7946 (cit. on p. 154).

[Cen+17] D. Ceneda, T. Gschwandtner, T. May, S. Miksch, H. Schulz, M. Streit,
and C. Tominski. “Characterizing Guidance in Visual Analytics”. In: IEEE
Transactions on Visualization and Computer Graphics 23.1 (2017), pp. 111–
120. doi: 10.1109/tvcg.2016.2598468 (cit. on p. 154).

[CM17] A. Chua and A. V. Moere. “BinSq: Visualizing Geographic Dot Density
Patterns with Gridded Maps”. In: Cartography and Geographic Information
Science 44.5 (2017), pp. 390–409. doi: 10.1080/15230406.2016.
1174623 (cit. on p. 148).

[CJ10] P. Comon and C. Jutten. Handbook of Blind Source Separation: Independent
Component Analysis and Applications. Oxford: Academic Press, 2010. doi:
10.1016/c2009-0-19334-0 (cit. on p. 147).

[Cre93] N. A. C. Cressie. Statistics for Spatial Data: Revised Edition. Hoboken,
NJ, USA: John Wiley & Sons, Inc., 1993. isbn: 978-1-119-11515-1 978-
0-471-00255-0. doi: 10.1002/9781119115151 (cit. on pp. 148, 151,
157).

[DFC08] U. Demšar, S. A. Fotheringham, and M. Charlton. “Combining Geovisual
Analytics with Spatial Statistics: The Example of Geographically Weighted
Regression”. In: The Cartographic Journal 45.3 (2008), pp. 182–192. doi:
10.1179/000870408x311378 (cit. on pp. 148, 149).

165

https://doi.org/10.1093/biomet/asz079
https://doi.org/10.1007/s11004-011-9360-7
https://doi.org/10.1109/tvcg.2015.2500225
https://doi.org/10.1080/23729333.2017.1301346
https://doi.org/10.1080/23729333.2017.1301346
https://doi.org/10.1109/immersive.2016.7932377
https://doi.org/10.1109/immersive.2016.7932377
https://doi.org/10.17487/rfc7946
https://doi.org/10.17487/rfc7946
https://doi.org/10.1109/tvcg.2016.2598468
https://doi.org/10.1080/15230406.2016.1174623
https://doi.org/10.1080/15230406.2016.1174623
https://doi.org/10.1016/c2009-0-19334-0
https://doi.org/10.1002/9781119115151
https://doi.org/10.1179/000870408x311378


4. Visual Parameter Optimization for Spatial Blind Source Separation

[Dem+13] U. Demšar, P. Harris, C. Brunsdon, A. S. Fotheringham, and S. McLoone.
“Principal Component Analysis on Spatial Data: An Overview”. In: Annals
of the Association of American Geographers 103.1 (2013), pp. 106–128. doi:
10.1080/00045608.2012.689236 (cit. on p. 146).

[Den96] B. D. Dent. Cartography: Thematic Map Design. 4th ed. Wm. C. Brown
Publishers, 1996. 434 pp. isbn: 978-0-697-22970-0 (cit. on p. 157).

[DB07] J. Dykes and C. Brunsdon. “Geographically Weighted Visualization: Inter-
active Graphics for Scale-Varying Exploratory Analysis”. In: IEEE Transac-
tions on Visualization and Computer Graphics 13.6 (2007), pp. 1161–1168.
doi: 10.1109/tvcg.2007.70558 (cit. on p. 148).

[FBC02] A. S. Fotheringham, C. Brunsdon, and M. Charlton. Geographically weighted
regression: the analysis of spatially varying relationships. John Wiley &
Sons, 2002. isbn: 0-471-49616-2 (cit. on p. 146).

[Gah+02] M. Gahegan, M. Takatsuka, M. Wheeler, and F. Hardisty. “Introducing
GeoVISTA Studio: An Integrated Suite of Visualization and Computational
Methods for Exploration and Knowledge Construction in Geography”. In:
Computers, Environment and Urban Systems 26.4 (2002), pp. 267–292. doi:
10.1016/s0198-9715(01)00046-1 (cit. on pp. 148, 149).

[GK15] M. G. Genton and W. Kleiber. “Cross-Covariance Functions for Multivariate
Geostatistics”. In: Statistical Science 30.2 (2015), pp. 147–163. doi: 10.
1214/14-sts487 (cit. on p. 146).

[Goo+16] S. Goodwin, J. Dykes, A. Slingsby, and C. Turkay. “Visualizing Multiple
Variables Across Scale and Geography”. In: IEEE Transactions on Visual-
ization and Computer Graphics 22.1 (2016), pp. 599–608. doi: 10.1109/
tvcg.2015.2467199 (cit. on p. 148).

[Gra] Gravitystorm. Thunderforest Landscape. url: https://www.thunderf
orest.com/maps/landscape/ (visited on 11/15/2021) (cit. on p. 154).

[GB20] M. Gröbe and D. Burghardt. “Micro Diagrams: Visualization of Categori-
cal Point Data from Location-Based Social Media”. In: Cartography and
Geographic Information Science 47.4 (2020), pp. 305–320. doi: 10.1080/
15230406.2020.1733438 (cit. on p. 148).

[Guo08] D. Guo. “Regionalization with Dynamically Constrained Agglomerative
Clustering and Partitioning (REDCAP)”. In: International Journal of Geo-
graphical Information Science 22.7 (2008). doi: 10.1080/13658810701674970
(cit. on pp. 151, 155).

[Hal18] S. K. Haldar. “Chapter 5 - Exploration Geochemistry”. In: Mineral Ex-
ploration (Second Edition). Ed. by S. K. Haldar. Elsevier, 2018, pp. 85–
101. isbn: 978-0-12-814022-2. doi: 10.1016/b978-0-12-814022-
2.00005-8 (cit. on p. 144).

166

https://doi.org/10.1080/00045608.2012.689236
https://doi.org/10.1109/tvcg.2007.70558
https://doi.org/10.1016/s0198-9715(01)00046-1
https://doi.org/10.1214/14-sts487
https://doi.org/10.1214/14-sts487
https://doi.org/10.1109/tvcg.2015.2467199
https://doi.org/10.1109/tvcg.2015.2467199
https://www.thunderforest.com/maps/landscape/
https://www.thunderforest.com/maps/landscape/
https://doi.org/10.1080/15230406.2020.1733438
https://doi.org/10.1080/15230406.2020.1733438
https://doi.org/10.1080/13658810701674970
https://doi.org/10.1016/b978-0-12-814022-2.00005-8
https://doi.org/10.1016/b978-0-12-814022-2.00005-8


4.9. Bibliography

[Har+15] P. Harris, A. Clarke, S. Juggins, C. Brunsdon, and M. Charlton. “Enhance-
ments to a Geographically Weighted Principal Component Analysis in the
Context of an Application to an Environmental Data Set”. In: Geographical
Analysis 47.2 (2015), pp. 146–172. doi: https://doi.org/10.1111/
gean.12048 (cit. on p. 146).

[Has+91] J. Haslett, R. Bradley, P. Craig, and A. Unwin. “Dynamic Graphics for
Exploring Spatial Data with Application to Locating Global and Local
Anomalies”. In: The American Statistician 45.3 (1991) (cit. on pp. 147,
164).

[Haz+20] S. Hazarika, H. Li, K.-C. Wang, H.-W. Shen, and C.-S. Chou. “NNVA:
Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simula-
tion”. In: IEEE Transactions on Visualization and Computer Graphics 26.1
(2020), pp. 34–44. doi: 10.1109/tvcg.2019.2934591 (cit. on p. 149).

[HMZ09] T. Hrnčiarová, P. Mackovčin, and I. Zvara. Atlas Krajiny České Republiky.
Praha, Průhonice: Ministerstvo životního prostředí ČR, Výzkumný ústav
Silva Taroucy pro krajinu a okrasné zahradnictví, 2009. 332 pp. isbn:
978-80-85116-59-5 (cit. on pp. 154, 162).

[JM00] T. Jankun-Kelly and K.-L. Ma. “A Spreadsheet Interface for Visualiza-
tion Exploration”. In: Proceedings Visualization 2000. VIS 2000 (Cat.
No.00CH37145). 2000, pp. 69–76. doi: 10.1109/visual.2000.885678
(cit. on p. 149).

[JF16] J. Johansson and C. Forsell. “Evaluation of Parallel Coordinates: Overview,
Categorization and Guidelines for Future Research”. In: IEEE Transactions
on Visualization and Computer Graphics 22.1 (2016), pp. 579–588. doi:
10.1109/tvcg.2015.2466992 (cit. on p. 149).

[Jol86] I. Jolliffe. Principal Component Analysis. New York: Springer, 1986 (cit. on
p. 146).

[Jom+08] T. Jombart, S. Devillard, A.-B. Dufour, and D. Pontier. “Revealing cryptic
spatial patterns in genetic variability by a new multivariate method”. In:
Heredity 101 (2008), pp. 92–103. doi: https://doi.org/10.1038/
hdy.2008.34 (cit. on p. 146).

[Kei00] D. Keim. “Designing Pixel-Oriented Visualization Techniques: Theory
and Applications”. In: IEEE Transactions on Visualization and Computer
Graphics 6.1 (2000), pp. 59–78. doi: 10.1109/2945.841121 (cit. on
p. 148).

[Kei+08] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and G.
Melançon. “Visual Analytics: Definition, Process, and Challenges”. In:
Information Visualization. Ed. by A. Kerren, J. T. Stasko, J.-D. Fekete, and
C. North. 4950. Berlin, Heidelberg: Springer, 2008, pp. 154–175. isbn: 978-3-
540-70955-8 978-3-540-70956-5. doi: 10.1007/978-3-540-70956-5_7
(cit. on p. 145).

167

https://doi.org/https://doi.org/10.1111/gean.12048
https://doi.org/https://doi.org/10.1111/gean.12048
https://doi.org/10.1109/tvcg.2019.2934591
https://doi.org/10.1109/visual.2000.885678
https://doi.org/10.1109/tvcg.2015.2466992
https://doi.org/https://doi.org/10.1038/hdy.2008.34
https://doi.org/https://doi.org/10.1038/hdy.2008.34
https://doi.org/10.1109/2945.841121
https://doi.org/10.1007/978-3-540-70956-5_7


4. Visual Parameter Optimization for Spatial Blind Source Separation

[Kim+13] S. Kim, R. Maciejewski, A. Malik, Y. Jang, D. S. Ebert, and T. Isenberg.
“Bristle Maps: A Multivariate Abstraction Technique for Geovisualization”.
In: IEEE Transactions on Visualization and Computer Graphics 19.9 (2013),
pp. 1438–1454. doi: 10.1109/tvcg.2013.66 (cit. on p. 148).

[LCX19] S. V. Liu, F.-l. Chen, and J. Xue. “A Meta-Analysis of Selected near-Road
Air Pollutants Based on Concentration Decay Rates”. In: Heliyon 5.8 (2019),
e02236. doi: 10.1016/j.heliyon.2019.e02236 (cit. on p. 151).

[Mat+18] J. Matejka, M. Glueck, E. Bradner, A. Hashemi, T. Grossman, and G.
Fitzmaurice. “Dream Lens: Exploration and Visualization of Large-Scale
Generative Design Datasets”. In: Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. Montreal QC, Canada: ACM
Press, 2018, pp. 1–12. isbn: 978-1-4503-5620-6. doi: 10.1145/3173574.
3173943 (cit. on p. 149).

[ML19] L. McNabb and R. S. Laramee. “Multivariate Maps—A Glyph-Placement
Algorithm to Support Multivariate Geospatial Visualization”. In: Infor-
mation 10.10 (2019), p. 302. doi: 10.3390/info10100302 (cit. on
p. 148).

[MH18] M. E. Meseery and O. Hoeber. “Geo-Coordinated Parallel Coordinates
(GCPC): Field Trial Studies of Environmental Data Analysis”. In: Visual
Informatics (2018), p. 14 (cit. on p. 149).

[MA14] S. Miksch and W. Aigner. “A Matter of Time: Applying a Data-users-tasks
Design Triangle to Visual Analytics of Time-oriented Data”. In: Computers
& Graphics 38 (2014), pp. 286–290. doi: 10.1016/j.cag.2013.11.002
(cit. on p. 151).

[MW20] A. Mohiuddin and R. Woodbury. “Interactive Parallel Coordinates for
Parametric Design Space Exploration”. In: Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems. Honolulu HI
USA: ACM, 2020, pp. 1–9. isbn: 978-1-4503-6819-3. doi: 10.1145/
3334480.3383101 (cit. on p. 149).

[Mue21] C. Muehlmann. “Advances in Blind Source Separation for Spatial Data”.
PhD thesis. Vienna, Austria: TU Wien, 2021, p. 100574. doi: 10.1016/j.
spasta.2021.100574 (cit. on pp. 144, 147, 156).

[MNV21] C. Muehlmann, K. Nordhausen, and J. Virta. SpatialBSS: Blind Source
Separation for Multivariate Spatial Data. R package version 0.12-0. 2021
(cit. on p. 152).

[MNY20] C. Muehlmann, K. Nordhausen, and M. Yi. “On Cokriging, Neural Networks,
and Spatial Blind Source Separation for Multivariate Spatial Prediction”.
In: IEEE Geoscience and Remote Sensing Letters 18 (2020), pp. 1931–1935.
doi: 10.1109/lgrs.2020.3011549 (cit. on p. 147).

168

https://doi.org/10.1109/tvcg.2013.66
https://doi.org/10.1016/j.heliyon.2019.e02236
https://doi.org/10.1145/3173574.3173943
https://doi.org/10.1145/3173574.3173943
https://doi.org/10.3390/info10100302
https://doi.org/10.1016/j.cag.2013.11.002
https://doi.org/10.1145/3334480.3383101
https://doi.org/10.1145/3334480.3383101
https://doi.org/10.1016/j.spasta.2021.100574
https://doi.org/10.1016/j.spasta.2021.100574
https://doi.org/10.1109/lgrs.2020.3011549


4.9. Bibliography

[Nor+15] K. Nordhausen, H. Oja, P. Filzmoser, and C. Reimann. “Blind Source
Separation for Spatial Compositional Data”. In: Mathematical Geosciences
47.7 (2015), pp. 753–770. doi: 10.1007/s11004-014-9559-5 (cit. on
pp. 144, 147).

[OR18] T. Opach and J. K. Rød. “Augmenting the Usability of Parallel Coordinate
Plot: The Polyline Glyphs”. In: Information Visualization 17.2 (2018),
pp. 108–127. doi: 10.1177/1473871617693041 (cit. on p. 149).

[Orb+19] D. Orban, D. F. Keefe, A. Biswas, J. Ahrens, and D. Rogers. “Drag
and Track: A Direct Manipulation Interface for Contextualizing Data
Instances within a Continuous Parameter Space”. In: IEEE Transactions
on Visualization and Computer Graphics 25.1 (2019), pp. 256–266. doi:
10.1109/tvcg.2018.2865051 (cit. on p. 149).

[Pic21] N. Piccolotto. npiccolotto/sbss-vis: Visual Parameter Selection for Spatial
Blind Source Separation. GitHub. 2021. url: https://github.com/
npiccolotto/sbss-vis (visited on 02/25/2022) (cit. on p. 152).

[R C23] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria, 2023 (cit. on
p. 151).

[Rei+14] C. Reimann, M. Birke, A. Demetriades, P. Filzmoser, and P. O’Connor.
Chemistry of Europe’s Agricultural Soils. Part A: Methodology and In-
terpretation of the GEMAS Data Set. Vol. Heft 102. Reihe B. Hannover:
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), 2014 (cit. on
pp. 144, 158).

[Rei+98] C. Reimann, M. Äyräs, V. A. Chekushin, I. V. Bogatyrev, R. Boyd, P. de
Caritat, R. Dutter, T. E. Finne, J. H. Halleraker, J. Øystein, G. Kashulina,
H. Niskavaara, et al. Environmental Geochemical Atlas of the Central
Barents Region. Trondheim: NGU Norges Geologiske Undersøkelse, 1998.
isbn: 82-7385-176-1 (cit. on p. 158).

[Rei+08] C. Reimann, P. Filzmoser, R. Garrett, and R. Dutter. Statistical Data
Analysis Explained. First Edition. John Wiley & Sons, Ltd, 2008. isbn:
978-0-470-98581-6. doi: 10.1002/9780470987605 (cit. on pp. 161, 163).

[Sed+14] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Möller. “Visual
Parameter Space Analysis: A Conceptual Framework”. In: IEEE Transac-
tions on Visualization and Computer Graphics 20.12 (2014), pp. 2161–2170.
doi: 10.1109/tvcg.2014.2346321 (cit. on p. 149).

[SEK10] D. B. Smith, K. J. Ellefsen, and J. E. Kilburn. Geochemical Data for
Colorado Soils: Results from the 2006 State-Scale Geochemical Survey. Data
Series 520. 2010 (cit. on p. 158).

169

https://doi.org/10.1007/s11004-014-9559-5
https://doi.org/10.1177/1473871617693041
https://doi.org/10.1109/tvcg.2018.2865051
https://github.com/npiccolotto/sbss-vis
https://github.com/npiccolotto/sbss-vis
https://doi.org/10.1002/9780470987605
https://doi.org/10.1109/tvcg.2014.2346321


4. Visual Parameter Optimization for Spatial Blind Source Separation

[TC05] J. J. Thomas and K. A. Cook. Illuminating the Path: An R&D Agenda for
Visual Analytics. National Visualization and Analytics Center, Department
of Homeland Security, IEEE Computer Society, 2005. isbn: 0-7695-2323-4
(cit. on p. 145).

[Tur+14] C. Turkay, A. Slingsby, H. Hauser, J. Wood, and J. Dykes. “Attribute Signa-
tures: Dynamic Visual Summaries for Analyzing Multivariate Geographical
Data”. In: IEEE Transactions on Visualization and Computer Graphics
20.12 (2014), pp. 2033–2042. doi: 10.1109/tvcg.2014.2346265 (cit.
on p. 148).

[Ume+14] N. Umetani, Y. Koyama, R. Schmidt, and T. Igarashi. “Pteromys: Inter-
active Design and Optimization of Free-Formed Free-Flight Model Air-
planes”. In: ACM Transactions on Graphics 33.4 (2014), pp. 1–10. doi:
10.1145/2601097.2601129 (cit. on p. 149).

[Wac03] H. Wackernagel. Multivariate geostatistics: an introduction with applications.
Berlin, Heidelberg: Springer Science & Business Media, 2003. doi: 10.
1007/978-3-662-05294-5 (cit. on pp. 144, 146).

[Wal+19] E. Wall, M. Agnihotri, L. Matzen, K. Divis, M. Haass, A. Endert, and
J. Stasko. “A Heuristic Approach to Value-Driven Evaluation of Visualiza-
tions”. In: IEEE Transactions on Visualization and Computer Graphics
25.1 (2019), pp. 491–500. doi: 10.1109/tvcg.2018.2865146 (cit. on
pp. 145, 158, 160).

[Wan+17] J. Wang, X. Liu, H.-W. Shen, and G. Lin. “Multi-Resolution Climate
Ensemble Parameter Analysis with Nested Parallel Coordinates Plots”. In:
IEEE Transactions on Visualization and Computer Graphics 23.1 (2017),
pp. 81–90. doi: 10.1109/tvcg.2016.2598830 (cit. on p. 149).

[Was+10] J. Waser, R. Fuchs, H. Ribičič, B. Schindler, G. Blöschl, and E. Gröller.
“World Lines”. In: IEEE Transactions on Visualization and Computer
Graphics 16.6 (2010), pp. 1458–1467. doi: 10.1109/tvcg.2010.223
(cit. on p. 149).

[Wic16] H. Wickham. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York, 2016. isbn: 978-3-319-24277-4 (cit. on p. 151).

[Zha+21] J. Zhao, X. Liu, C. Guo, C. Qian, and Y. V. Chen. “Phoenixmap: An
Abstract Approach to Visualize 2D Spatial Distributions”. In: IEEE Trans-
actions on Visualization and Computer Graphics 27.3 (2021), pp. 2000–2014.
doi: 10.1109/tvcg.2019.2945960 (cit. on p. 148).

[Zho+17] M. Zhou, J. Tian, F. Xiong, and R. Wang. “Point Grid Map: A New Type of
Thematic Map for Statistical Data Associated with Geographic Points”. In:
Cartography and Geographic Information Science 44.5 (2017), pp. 374–389.
doi: 10.1080/15230406.2016.1160797 (cit. on p. 148).

170

https://doi.org/10.1109/tvcg.2014.2346265
https://doi.org/10.1145/2601097.2601129
https://doi.org/10.1007/978-3-662-05294-5
https://doi.org/10.1007/978-3-662-05294-5
https://doi.org/10.1109/tvcg.2018.2865146
https://doi.org/10.1109/tvcg.2016.2598830
https://doi.org/10.1109/tvcg.2010.223
https://doi.org/10.1109/tvcg.2019.2945960
https://doi.org/10.1080/15230406.2016.1160797


CHAPTER 5
Visual Sensitivity Analysis for

Spatial Blind Source Separation

The content of this chapter is published in:

Nikolaus Piccolotto, Markus Bögl, Christoph Muehlmann, Klaus Nordhausen, Peter Filz-
moser, Johanna Schmidt, Silvia Miksch: Data Type Agnostic Visual Sensitivity Analysis.
IEEE Transactions on Visualization and Computer Graphics, vol. 30, no. 1, 2024. DOI:
10.1109/TVCG.2023.3327203.

Context. In the following publication, we consider again a non-stationary SBSS model
(Section 1.1.3) and, after supporting optimization in the previous publication (Chapter 4),
focus on the PSA task sensitivity analysis. SBSS parameters and outputs are not
of the kind of multivariate data that many numerical sensitivity analysis techniques
are designed for, so their applicability is uncertain. Together with our collaborators
(Christoph Muehlmann, Klaus Nordhausen, and Peter Filzmoser) we propose a visual-
interactive approach that builds on a simple sensitivity index derived from the cluster
diameter difference in parameter and output space. The main proposed visualization is the
Discrepancy Dendrogram, which indicates by color if clusters are wider or narrower in the
compared data space. We evaluated the prototype heuristically with visualization experts
and in interviews with SBSS experts. Since our approach requires only dissimilarity
information of data points, we could also show its transferability to another dataset and
problem context. To this end, we interviewed a microclimate simulation expert together
with Johanna Schmidt from VRVis GmbH. While the visualization experts were somewhat
in disagreement about whether our VA prototype employs “good” visualizations, the other
experts identified sensitive and stable parameter ranges with the help of our prototype.

RQ’s Concerned: RQ1, RQ2, RQ3, RQ4.
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5. Visual Sensitivity Analysis for Spatial Blind Source Separation

5.1 Abstract
Modern science and industry rely on computational models for simulation, prediction,
and data analysis. Spatial blind source separation (SBSS) is a model used to analyze
spatial data. Designed explicitly for spatial data analysis, it is superior to popular
non-spatial methods, like PCA. However, a challenge to its practical use is setting two
complex tuning parameters, which requires parameter space analysis. In this paper, we
focus on sensitivity analysis (SA). SBSS parameters and outputs are spatial data, which
makes SA difficult as few SA approaches in the literature assume such complex data on
both sides of the model. Based on the requirements in our design study with statistics
experts, we developed a visual analytics prototype for data type agnostic visual sensitivity
analysis that fits SBSS and other contexts. The main advantage of our approach is
that it requires only dissimilarity measures for parameter settings and outputs. We
evaluated the prototype heuristically with visualization experts and through interviews
with two SBSS experts. In addition, we show the transferability of our approach by
applying it to microclimate simulations. Study participants could confirm suspected and
known parameter-output relations, find surprising associations, and identify parameter
subspaces to examine in the future. During our design study and evaluation, we identified
challenging future research opportunities.

5.2 Introduction
In many domains, data analysis requires dealing with multivariate measurements in
space. For instance, mining corporations and public agencies may analyze geochemical
soil samples for mine prospecting or investigating environmental pollution, respectively.
Depending on the specific goal and application, various tasks, e.g., dimensionality
reduction or finding meaningful linear combinations of variables, must be carried out
on such datasets. Spatial blind source separation (SBSS) [Nor+15; Bac+20; MBN22]
is designed explicitly for multivariate spatial data and reveals linear combinations of
such data. SBSS offers various benefits compared to alternative methods, e.g., it keeps
the well-known loading-scores scheme from principal component analysis and adequately
accounts for spatial dependence due to its model-based approach. Therefore, latent
dimensions identified with SBSS often correspond to the physical reality where data was
collected, making it an excellent analysis tool for spatial data. A detailed description of
SBSS is out of scope for this paper, and we refer interested readers to [Nor+15; Pic+22b;
MBN22]. SBSS has been successfully applied to a geochemical dataset [Nor+15] and may
be potentially used in any application domain that involves multivariate quantitative
measurements at different locations.

SBSS requires setting two complex tuning parameters: A partition of the spatial domain in
non-overlapping regions (regionalization) and a ring-shaped point neighborhood (kernel).
On the other side of the model (Figure 5.2), SBSS yields a set of latent spatial dimensions
(i.e., maps), where each is a linear combination of original dimensions with weights
(loadings) given by the unmixing matrix. Consequently, parameter space analysis tasks
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Figure 5.1: Illustration of the visualization pipeline used for the Discrepancy Dendrogram.
The key idea of it is to use cluster diameters as a measure for variation in complex
parameter settings and outputs. Given dissimilarity measures for each, we perform
hierarchical clustering separately in each space. Distances are normalized by ranking or
min-max normalization for comparison. For every cluster obtained through hierarchical
clustering, we evaluate the difference in its diameter and visualize that by color.

[Sed+14] become relevant. Previous work [Pic+22b] focused on the optimization task,
but sensitivity analysis (SA) is considered equally important for SBSS. SA compares
the relative variation in parameter settings and output of the model, thus highlighting
relevant/irrelevant parameters and their stable/sensitive ranges. This analysis is essential
to obtain and communicate reliable results, i.e., those not a consequence of luck and
coincidence. SA is especially important for SBSS as it lacks so far any goodness-of-fit
criteria; hence deciding between alternative parameter settings is challenging. SA can
help with this decision as in prior work on blind source separation [Pic+22a; Pic+22b],
analysts noted that they find stable parameter settings more trustworthy and associated
outputs more likely to be the “real” solution. SA may thus further strengthen the outcome
of an optimization task and, additionally, inform geostatistical modeling: If, e.g., the
regionalization parameter barely influences the output, analysts might reasonably suspect
that the input dataset is spatially stationary (a geostatistical modeling decision).

SBSS is interesting for the visualization community primarily because of the mentioned
affordances of its parameters and outputs: Parameter settings and outputs are spatial
objects or otherwise complex in a way that a multivariate representation does not do
them justice. While the literature contains many examples of visual parameter space
exploration [Sed+14; PBM23], to the best of our knowledge, none of them support
complex parameters and outputs without resorting to multivariate representation or
feature derivation (Section 5.3). However, these requirements are not specific to SBSS,
as many examples exist for models with complex parameters and outputs. For instance,
spatial or time-varying inputs and outputs can arise in microclimate simulations [Vuc+22].
They predict meteorological variables (e.g., air temperature, humidity, or wind speed) in
a small area, typically for a single street or building.
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Figure 5.2: SBSS [Nor+15; Pic+22b; MBN22] takes a regionalization (R) and a kernel
(K) as parameters and outputs a linear combination of input variables (latent spatial
dimensions), described by the unmixing matrix (W).

We intend to close this gap with our paper. The core idea of our proposal is illustrated
in Figure 5.1: We take a cluster’s diameter as a measure of variation for the contained
parameter settings or associated outputs (referred to as data cases, respectively). Then
we can enable SA for SBSS in the following way. Given appropriate dissimilarity measures
for data cases, we compute pairwise distances in each space (parameter and output),
based on which a hierarchical clustering is produced. After normalizing distances, we
compute the diameter difference of all clusters between one space and the another. This
information is then presented in our main visualization, the Discrepancy Dendrogram.
Supporting visualizations complete required user tasks. In particular, the contributions
of our design study are that we

• propose a task abstraction for SA in the context of SBSS (Section 5.4);

• based on SBSS requirements, develop a visualization that supports SA and works
on any data type (Figure 5.1, Section 5.5);

• integrate this and other visualizations in a visual analytics prototype (Section 5.6);

• evaluate the prototype with experts in visualization (Section 5.7.1) and SBSS
(Section 5.7.2);

• show the transferability to other problems by applying our approach to microclimate
simulations (Section 5.7.3).

5.3 Related Work

5.3.1 Sensitivity Analysis

Sensitivity Analysis (SA) is “the study of how the uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different sources of uncertainty in the
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model input [Sal02, p. 1].” SA allows analysts to determine how variations in the input
influence the output. A broad distinction between various SA methods can be drawn at
whether they are local or global [Sal+07]. Local methods are applicable when the model
is linear as they yield, e.g., a partial derivative according to one parameter. An example
of such local methods is the one-at-a-time approach, where one parameter is varied while
the others are kept fixed. Global methods, on the other hand, are applicable to non-linear
models, too. A well-known example is the Sobol index [Sob90], a variance-based global
SA method. Several surveys exist [Ham94; IC04; CI04; IL15; BP16; Sal+19] that collect
and discuss both local and global methods. Methods covered in these surveys mainly
consider models with multivariate parameters, e.g., the output scalar y is a function of
an input vector x: y = f(x). Spatially-varying parameters [LT09; Rai+19] or outputs
[Mar+11; Lig13] have been considered as well. However, these methods do not fit to
SBSS (Figure 5.2).

5.3.2 Visual Parameter Analysis

Visual parameter analysis (VPA) has a long history in the visualization literature, with
seminal works published in the 1990s, like Design Galleries [Mar+97] or spreadsheet
interfaces [JM00]. Sedlmair et al. [Sed+14] provided a common data flow model and a task
taxonomy, such as optimization, uncertainty, or SA. Piccolotto et al. [PBM23] surveyed
user interfaces and visualizations that support visual parameter space exploration. Several
examples of VPA for multivariate parameters can be found in the literature [YBP21;
Kni+21; Cib+20; Paj+17; Ber+13; Guo+11]. However, these approaches do not apply
to SBSS parameters.

Many approaches have been used when it comes to visualizing parameter-output relations
[PBM23]. When parameters are multivariate, visualizations that show correlations
and trends can be used to carry out SA, such as histograms, scatterplots, or PCPs
[Beh+14; Wan+17; Cib+23]. These visualizations are often juxtaposed and linked, such
that selections in one view highlight the same data in other views [Mat+17]. Another
option is to embed parameters and outputs in the same visualization, e.g., by encoding
them as axes in the same PCP [Ste+13] or by color-coding a 3D model [Dor+15]. A
consequence of juxtaposition is that general visualization-independent approaches may
be used together. E.g., first grouping data cases by similarity, then inspecting properties
of individual groups [BM10; AE20; Haz+20] is popular. Orban et al. [Orb+19] devised
two linked dimensionally-reduced (DR) scatterplots, an approach that can generally be
extended to complex data and SBSS parameters/outputs. However, our target users
struggled with DR scatterplots in previous work [Pic+22a]. The difficulty was that
the DR spatializations looked like scatterplots but did not show the same information
and required a different way of reading, which was unintuitive to them. Therefore, we
developed an alternative approach. A more specific form of juxtaposition is to align
data cases in useful ways that highlight dependencies between parameters and outputs,
e.g., as part of a spreadsheet [Lub+14; Lub+15; EST20]. The idea is that dependencies
become visible when the spreadsheet is sorted by multiple columns. However, it requires
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a compact visual representation. Superposition may be possible if parameter and output
refer to the same space, such as particle trajectories and their initial position [GT16].
Sequential Superposition leverages a system’s interactivity. The analyst may rapidly
browse between parameter/output pairs, and sudden visual jumps in the emerging
animation point to sensitive parameter ranges [Sch+17; RGG18; He+20]. Parameter
and output visualizations may also be integrated with explicit links drawn between
them. E.g., a trapezoid that connects parameter and output histograms shows sensitivity
by the relative length of horizontal segments [Wei+16]. Another option for composite
visualizations of parameters and outputs for SA is nesting, i.e., putting visualizations
inside the marks of another, like correlation matrices in an interval tree [EST20].

Data mining methods may also support visual SA. E.g., if regression analysis between
parameter and output is possible, that information can be shown in the parameter
visualization in the spirit of scented widgets [WHA07; KSI14; Des+19]. Correlation
analysis between parameters and derived output features may also be done if they lend
themselves to it [EST20]. Developing a surrogate model augmenting the original model
with fast but inaccurate output predictions for new parameter settings is standard practice
in VPA [Sed+14]. It may be possible to extract information from the surrogate to support
SA, such as parameters in linear regression [Mat+17], or partial derivatives in neural
networks [Haz+20].

Generally, in existing work, either the parameter (by multivariate representation) or the
output (by feature derivation) must have multivariate characteristics. Our contribution
to visual sensitivity analysis enables it in situations where both parameter and output
are of complex data types, e.g., spatial objects.

5.3.3 Visual Cluster Analysis and Clustering Comparison

Clustering is an essential wide-spread class of data analysis methods, and various flavors
were proposed over time [XT15]. Generally, clusterings partition data cases into coherent
groups according to a distance function. Visual inspection of these groups may reveal
previously hidden patterns. To visualize the whole clustering, nowadays, color-coded
dimensionally-reduced scatterplots are commonly employed [Kwo+18; CD19; Xia+22].
However, these scatterplots are only approximate, as they contain projection errors
[Jeo+22], and may require specialized knowledge to interpret [WVJ16]. Glyph-based
visualizations [Cao+11] were proposed in the context of geospatial data. Dendrograms
[SS02; Gal15] commonly depict hierarchical clusterings. Blanch et al. [BDB15] proposed
the Dendrogramix, a combination of dendrogram and matrix visualization. The clustering
outcome depends on the specific algorithm and parameters, so visualizations were proposed
to compare these. However, they focus on the analysis of cluster members [CD19],
comparison of clusterings concerning parameters [CD19] or algorithms [LYi+15; Kwo+18].
I.e., the definition of distance between data cases is fixed. Our work may be seen as
comparing clusterings with alternative distances (Figure 5.1).
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5.4 Users & Task Abstraction

As in previous work on SBSS [Pic+22b], our primary users are experts in statistics. We
anticipate our user base to eventually include domain experts, e.g., from geochemistry.
We conducted an extensive literature review [PBM23] to understand how visual VPA
and, consequently, visual SA work in other contexts. Based on that, we distilled generic
SA sub-tasks to enable SA on the SBSS-specific complex parameters with our clustering-
based approach (T1–T5). We presented and discussed them with our collaborators
(statistics/SBSS experts who are co-authors of this paper) to ensure their suitability.
Based on these tasks, we developed the main visualization (Section 5.5).

Tasks. First, to start the analysis, analysts must compare the association between
parameters and outputs (T1). Pairs of highly associated parameters and outputs are less
interesting to investigate. For any given parameter/output, they must assess its overall
variation (T2) to learn about contained similarity structures and outliers. Furthermore,
analysts must identify groups of data cases with low/high variation in a parameter/output
(T3) in order to compare variation between parameters and outputs, both overall and for
a group of data cases (T4). To support analysts in reasoning why this variation happens,
they must be able to view individual data cases (T5).

Guidelines. In addition to user tasks, we formulate three design guidelines for the
visualizations. These were informed by evaluations conducted in our past work [Pic+22a;
Pic+22b] and by widely used visualization guidelines. First, visual marks of similar
values should be adjacently arranged (D1). This visual requirement suggests continuity
that scalars exhibit naturally, but complex objects do not. It will make it easier to
perceive stable/sensitive parameter ranges. Occlusion must be avoided (D2) to not clutter
the display. The visualization should, if possible, resemble a familiar graphic (D3) that
our target users are familiar with.

5.5 Discrepancy Dendrogram

We describe in this section how our main visualization, the Discrepancy Dendrogram, is
constructed (also compare Figure 5.1). The complete VA prototype will be discussed in
the following section. We aim for a visual-interactive approach for two reasons. First,
we did not find numerical SA approaches that are applicable to our data (Section 5.3.1).
Second, our approach needs configuration (e.g., Section 5.5.2 or Section 5.5.3), where
each choice highlights different patterns (compare Figure 5.10), impacting the conclusions
to draw. Thus, in an interactive setting, the analyst can quickly change between those
configurations and thoroughly compare them (see, e.g., Section 5.7.2).

The core of SA is to compare the relative variation in parameter settings and outputs. It
can readily be quantified for numbers (cf. variance-based SA approaches), but measuring
variation for complex objects, like the spatial SBSS parameters, is not straightforward.
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Our proposal’s core idea (Figure 5.1) is to consider cluster diameters for that purpose: A
cluster gets wider the more dissimilar contained data cases are. Conversely, the cluster
diameter is zero when all contained data cases are the same. There are advantages to
that approach. First of all, a clustering can be obtained when only pairwise similarity
information (Section 5.5.1) is available. Thus a formal notion of variation need not exist
for the data type at hand. Second, cluster analysis generally supports tasks T2 and T3
when one investigates global cluster structures (e.g., how many exist, how many data
cases they contain) and local structures (e.g., finding outlier cases). Hence we propose
to augment a visualization of cluster structures with the information required for SA,
i.e., whether clusters shrink or expand when applying another dissimilarity measure to
the data cases. This approach can be seen as orienting guidance [Cen+17] that points
analysts to interesting data cases. The major available choices at this point are i) the type
of visualization and ii) how to compute the augmenting information. The two choices
are independent, and we focus on the latter before discussing the former in Section 5.5.5.

Sampling. Any parameter space analysis task requires a reasonable set of (parameter
setting, output) tuples. Common desired sampling properties are that it is uniform and
spans a large part of the parameter space, which is achieved via automated sampling
techniques. These are hard problems for SBSS, where two random parameter settings are
not a-priori equally reasonable. Domain knowledge critically informs parameter selection
in SBSS [Pic+22b]. Single-execution runtimes measured in minutes or hours further
complicate the issue. Thus, following study participants’ current practices in SBSS and
microclimate simulations, we rely on a few dozen, mostly manually selected, parameter
settings and limit SA insights to that subspace. While not solving everything at once,
our approach still improves their current situation.

5.5.1 Dissimilarity Measures

Dissimilarity measures, considerably the basic requirement for any analysis, exist for
many data types. A dissimilarity measure is a function d(·, ·)→ R+ that quantifies how
similar two objects are. Generally, we expect that d(a, b) = 0 iff a = b and that d(a, b) is
strictly monotonically increasing with the differences between a and b. We assume such
a dissimilarity measure for every model parameter and output.

5.5.2 Hierarchical Clustering

Flat partitioning cluster algorithms, like k-means, divide the dataset into an a-priori
specified number of groups while minimizing intra-group distances. On the other hand,
hierarchical clustering algorithms retain all cluster structures in the dataset and, therefore,
do not require a k parameter. Hierarchical clustering is thus preferable because it will
contain all possible clusters the analyst might be interested in, and we can enumerate them.
We chose a clustering by agglomerative nesting (AGNES) [Roh82] because bottom-up
hierarchical clustering is easier to think about and, thus, easier to explain to analysts than
the top-down variant. Further, many current alternatives, such as HDBSCAN [CMS13],
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require Euclidean distances and can not be used with just dissimilarities. The main
parameter of AGNES is the linkage criterion, i.e., how to compute the distance between
two clusters. Only some linkage criteria can be used in our case. E.g., centroid-based
variants like Ward’s method are not applicable as the concept of a centroid may not exist
for complex data types, such as regionalizations. Consequently, we provide complete and
average linkage as user-selectable hierarchical clustering parameters.

5.5.3 Normalize Cluster Distances

We aim to evaluate whether a given cluster shrinks or expands when an alternative
dissimilarity measure dA() is applied. The obvious problem here is that d() and dA()
might have differing images, i.e., one maps to the unit interval [0, 1] while the other
maps onto [0, 1312]. We propose ranking or min-max normalization to solve this issue.
Both operations work on a distance matrix. Ranking replaces values in all cells by their
rank, while min-max normalization maps values onto the unit interval. When comparing
ranks, the focus will naturally be on ordinal changes, ignoring magnitude. Min-max
normalization, on the other hand, preserves magnitude. The analyst can switch between
the two as both approaches have advantages and drawbacks (compare Figure 5.10).

5.5.4 Compare Cluster Diameters (Sensitivity Index)

Finally, we require a way to measure a cluster’s diameter, which roughly corresponds to
the linkage criterion in Section 5.5.2. To find candidates, we turn to internal clustering
validation measures [Liu+10], as no external information exists in our case. These
usually incorporate the compactness of clusters, which measures the variation within a
cluster. Based on the selected linkage criterion, we use the largest distance between any
two elements (complete linkage) or the average distance between all elements (average
linkage).

Given two distance-normalized hierarchical clusterings P and O (e.g., one with distances
of parameter settings and one with output distances) and a cluster diameter definition,
we can compute by how much a cluster in P shrinks or expands in O, or the other
way around, as P and O cluster the same data cases. We evaluate the index() function
(Alg. 5.1) for every cluster, i.e., every horizontal line in a dendrogram. D{1,2} are the
respective distance matrices of P and O. The subroutine upperTri returns the upper
triangle of a square matrix, and select selects specified rows and columns of a square
matrix. The function can be seen as a sensitivity index as it quantifies how much the
variation differs between the parameter and output space.

5.5.5 Visualization

Two established visualization idioms for clusterings are dimensionally-reduced scatterplots
and dendrograms. As our target users (statistics experts) found the former approach in
previous work [Pic+22a] rather unintuitive, we chose the latter for our context, fulfilling
design guideline D3 (Section 5.4). Additionally, a dendrogram supports many other
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Algorithm 5.1: Pseudocode of sensitivity index computations.
Data: Cluster C of data cases, normalized distance matrices D1 and D2, cluster

diameter definition diam().
1 Function index(C, D1, D2, diam) is
2 D1[C]← upperTri(select(D1, C))
3 D2[C]← upperTri(select(D2, C))
4 return diam(D1[C])− diam(D2[C])
5 end

guidelines and user tasks. The leaves are juxtaposed (D2), and similar leaves, which
are joined into clusters earlier than dissimilar leaves, naturally appear adjacent (D1).
Optimal leaf orderings may be used [BGJ01]. Lines encode the diameter of every possible
cluster that could be interesting (T2–T3). These lines do not overlap (D2). The open
challenges are encoding the sensitivity index (Section 5.5.4) in the dendrogram (T4) and
ensuring that visualizations of data cases are visible (T5).

The free visual channels in a dendrogram we could use to support T4 are line color (hue,
saturation), line texture (e.g., dashed or dotted), and line thickness. We encoded the
sensitivity index in color hue (compare Figure 5.1). The index diverges with 0 at the
center. Hence, the direction is as important as the magnitude. Two-directional encodings
are standard for color hue (diverging scales) but very uncommon for the other attributes
and likely confusing for our target users. We use two diverging scales dependent on the
choice of distance normalization (Section 5.5.3): Red–blue (ranked) and purple–green
(min-max). By default, the color scale spans the whole theoretically possible index
interval, but the analyst may instead use the interval as found in the dataset to highlight
small-scale patterns.

To support task T5, we show customized space-efficient visualizations as leaves of the
Discrepancy Dendrogram (Figure 5.5-A, bottom). There is little available space when
the dendrogram shows many data cases. We combat this issue with several strategies.
First, clusters of the dendrogram can be hidden. Second, when leaves are clicked, a
tooltip containing a more detailed visualization appears. I.e., we show the regionalization
parameter of SBSS as flat polygons in the dendrogram and as an interactive Leaflet map
in tooltips. Any cluster can be selected to be shown in the Gallery (Figure 5.5-B). More
interactions are described in Section 5.6.1.

5.5.6 Interpretation, Notation and Example

The choice of the color scale’s orientation is arbitrary. We decided that red (purple)
highlights an expanded cluster while blue (green) marks shrunk clusters in the alternative
distance (O in Figure 5.1). Consequently, interpretations regarding stability or sensitivity
depend on how parameters and outputs are assigned to primary and alternative distances
(Figure 5.3). E.g., sensitive parameter settings are associated with wider clusters in the
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Figure 5.3: Parameter assessment changes depending on the assignment to primary and
alternative distance in the Discrepancy Dendrogram. Glyphs in the document show the
color of wider output clusters.

output space compared to the parameter space, which can appear as blue (parameter as
primary distance) or red (parameter as alternative distance). In the remainder of the
paper, we will use appropriate glyphs to denote the direction of sensitive parameters. A
XY Discrepancy Dendrogram will thus i) compare X and Y, ii) show a dendrogram of

clusters in X, iii) mark data cases with sensitive parameter settings as red.

Figure 5.4 shows a XY Discrepancy Dendrogram for the function y = x2 sampled
uniformly in the interval [−4, 4]. The dendrogram separates the parameter space into
three clusters with X 1.4 to 4, −4 to −1.9, and −1.8 to 1.3 (from left to right). The
lines’ hue may be interpreted as the absolute gradient: Red lines mark wider clusters in
Y (high) while the right-most cluster is gray (low). When plotted as a line chart, these
patterns would refer to the parabola arms (red clusters) and the part between them
(gray) as visible in the inset.

5.6 Visual Analytics Prototype

To facilitate SA of SBSS parameters and outputs, we propose a visual analytics prototype
(Figure 5.5). We developed it in a user-centered design process in collaboration with
statistics experts, who are co-authors of this paper. Links to a web version of the software
are available in the supplemental material of the paper.

5.6.1 Discrepancy Dendrogram (T2–T5, D1–D3)

We discuss the construction of the Discrepancy Dendrogram in Section 5.5 and focus
here on interactions. We provide several interactions with the Discrepancy Dendrogram
to allow detailed investigation of clusters and to scale it to larger datasets. First of
all, the user may choose between ranked and normalized distances (Section 5.5.3) and
select the bounds of the color scale (Figure 5.5, left top). Further, they may choose the
linkage criterion for the dendrogram (Section 5.5.2), which also affects cluster diameter
computations (Section 5.5.4). Second, there might be multiple parameters and outputs
in a given dataset. The analyst can thus select which parameter/output to build the
dendrogram with (primary distance), which parameter/output to compare it to in the
sensitivity index calculation (alternative distance), and which parameter/output to show
in the dendrogram leaves (Figure 5.5-A1 to A3). As color hue is not a precise visual
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Figure 5.4: XY Discrepancy Dendrogram of the function y = x2 (inset top right), with
some clusters collapsed for readability. Red color highlights clusters that are wider in Y
than X (=sensitive parameter ranges, i.e., marked parabola arms in inset).

channel, we encode a cluster’s diameter difference additionally in the length of a vertical
line segment next to the dendrogram’s Y-axis legend. Other dendrogram interactions
are more concerned with scalability. It is possible to collapse a cluster (shift + click),
collapse all other clusters (meta + click), and collapse all clusters below a user-defined
height (click on the Y-axis). These interactions free up additional display space for an
area of interest. Colored circles replace collapsed clusters. The circle size is proportional
to the amount of data cases in the cluster, while the color corresponds to the clicked
line’s color. The data cases of a collapsed cluster are replaced by a cluster representative.
Finally, a cluster can be selected, after which contained data cases are shown in the
Gallery (Figure 5.5-B).

5.6.2 Gallery (T5)

The Gallery shows data cases of a selected cluster in a grid (Figure 5.5-B). The number
of columns and their width can be selected by the analyst, as can the sort order of
data cases and which parameter or output they should show. It is possible, e.g., to sort
parameter visualizations by output similarity, as is often done in visual parameter space
analysis [Lub+14; EST20]. Thus, the Gallery can show complex patterns.
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A

B

C

D
E

A1 A2 A3

Figure 5.5: Screenshot of our prototype showing 48 SBSS parameters and outputs
(Section 5.7.2). Components: (A) Discrepancy Dendrogram (Section 5.5, Section 5.6.1),
(B) Gallery (Section 5.6.2), (C) Subset Sensitivity View (Section 5.6.3), (D) Shepard
Matrix (Section 5.6.4), (E) tooltip.

5.6.3 Subset Sensitivity View (T4)

The Gallery shows data cases of a selected cluster in a grid (Figure 5.5-B). The number
of columns and their width can be selected by the analyst, as can the sort order of
data cases and which parameter or output they should show. It is possible, e.g., to sort
parameter visualizations by output similarity, as is often done in visual parameter space
analysis [Lub+14; EST20]. We obtain the sort order by a 1D multidimensional scaling
projection. Thus, the Gallery can show complex patterns.

5.6.4 Shepard Matrix (T1)

We want to give analysts a way to judge which parameter-output relations to investigate
(T1). To this end, we use a Shepard diagram [de 05] showing all pairwise distances of data
cases in a scatterplot. Each axis is the distance according to one measure. A diagonal
line in a Shepard diagram thus means a perfect correspondence between two distance
measures, and a dispersed Shepard scatterplot may be more interesting to investigate.
We use the same color hue as in the Discrepancy Dendrogram for dots in a Shepard
diagram, i.e., the further away from the diagonal, the more color hue is used. As the
dataset usually has more than two parameters/outputs, we adapt the scatterplot matrix
to Shepard diagrams to show all possible combinations (Figure 5.5-D).
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5.7 Evaluation
We evaluated our visualizations heuristically and with expert interviews. The TU Wien
pilot ethics board assessed our methods. Thus, our research adheres to the highest ethical
standards. Specifically, our research questions were:

• (RQ1) Does our visualization design allow efficient and effective SA for SBSS
parameters/outputs?

• (RQ2) Is our designed guidance effective?

• (RQ3) Does our visualization design transfer to other contexts than SBSS?

For RQ1 and RQ2, we conducted a heuristic evaluation with five visualization experts
(Section 5.7.1). Two SBSS experts used our visualizations on their own data (Section 5.7.2),
which also informs RQ1 and RQ2. Finally, for RQ3, we discussed visualizations with
a microclimate simulation expert using an appropriate dataset. In this section we use
two-letter shortcuts for people: Just letters indicate authors (e.g., NP) and a trailing
number refers to participants (e.g., ME1).

Procedure. All sessions started with a 30 minutes introduction where we explained
our problem context and the visualizations independently from the available datasets
in the prototype. The slides are available in the supplemental material in the appendix.
After the introduction, visualization experts continued with the questionnaire. The other
experts used the prototype on a dataset and parameter settings they were familiar with.
A semi-structured interview followed for all participants.

5.7.1 Visualization Experts (RQ1, RQ2)

We evaluated our visualization design heuristically with visualization experts according to
the ICE-T method [Wal+19]. While a good design does not imply that the visualizations
are effective, we think the inverse most likely holds (bad design → ineffective). Our
chosen method is a good compromise between insights gained and the time requested
from participants. We asked five participants (four Ph.D. students and one post-doc)
from various universities to join our evaluation. We mostly met them over Zoom, and
the sessions took around one hour each. According to ICE-T guidelines, five people are
sufficient. Participants were free to use the prototype with various datasets on their own
computers. They could always return to the visualization while filling out the ICE-T
questionnaire. ICE-T responses are on a 7-point Likert scale. We asked them to share
their thought process to understand their critique better.

Table 5.1 holds the results of these questionnaires, split by ICE-T component. The
complete responses are available as supplemental material in the appendix. Wall et
al. [Wal+19] state that a visualization design is successful when the mean score exceeds
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Component Mean Std.dev

Insight 6.26 1 7 1.06
Confidence 5.11 1 7 2.03
Essence 5.32 1 7 1.45
Time 6.08 1 7 0.91
Total 5.83 1 7 1.50

Table 5.1: Results of the ICE-T evaluation with visualization experts. Responses were on
a 7-point Likert scale. A total mean greater than five (small bar) is considered a success.

five, which we clearly achieved with an overall mean of 5.83. Our visualization’s worst-
scoring component (mean 5.11) is Confidence, which is also the one with the highest
standard deviation. While participants agreed that we use “meaningful and accurate
visual encodings” (question Q18 in the ICE-T questionnaire) and “avoid misleading repre-
sentations” (Q19), they mostly disagreed that our visualization “promotes understanding
beyond individual data cases” (Q20) or highlights data quality issues (Q21). It would
take some effort to detect duplicate or invalid data cases in our visualization, but that
was a conscious design choice. The second-worst component is Essence, which also has
the second-highest standard deviation, indicating disagreement between participants. In
fact, the two most contested questions here were whether the visualization “facilitates
generalizations and extrapolations” (Q16) or “helps understand how variables relate in
order to accomplish different analytic tasks” (Q17). Low ratings in the former were, e.g.,
because the Discrepancy Dendrogram assesses individual clusters but does not indicate
differences between elements. This issue could be tackled in the future by specially
crafted comparison visualizations. In the latter question, some participants focused
on the “different analytic tasks” and argued that our visualization does not fulfill this
criterion due to its singular focus.

On the other hand, participants rated the Insight and Time components very well. Two
questions of the former seemed somewhat controversial, as they are associated with
higher standard deviations (1.79 and 1.64). One participant somewhat disagreed that the
visualization “facilitates perceiving relationships in the data” (Q2). Their reasoning was
as follows. We show data cases as leaves in the Discrepancy Dendrogram and also in a
gallery to the side. However, all data cases are separate visualizations, so it would be
akin to showing individual bars instead of a histogram. However, they also realized that
this was not a goal of our visualization design. The other contested question was whether
the visualization “helps identify unusual or unexpected, yet valid, data characteristics”
(Q5). One participant somewhat disagreed, mentioning that data cases with unusual or
unexpected features would be hard to spot if the distance metrics would not consider
these. We do not see this as an issue because the chosen dissimilarity metrics might as
well measure local differences.
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5.7.2 SBSS (RQ1, RQ2)

Two experts (SE1 and SE2) in statistics and SBSS, who were not part of the design
process, used our visualizations on familiar datasets. They were recruited from the
authors’ professional network as they were required to have knowledge of SBSS. They
both hold a Ph.D. in statistics and published on spatial data analysis. Sessions took
around 2 hours. We guided them in the process as much as necessary, e.g., formulated
possible analysis goals and answered any questions they had. After that, we continued
with a semi-structured interview, inquiring about their confidence in findings, possible
insights, and how these relate to prior expectations.

Datasets and Parameter Settings. The experts used two spatial datasets. SE2
worked on the Colorado dataset, which is a geochemical survey of 960 locations and
27 variables in Colorado, USA. Both SE2 and NP contributed parameter settings to
investigate, as was agreed upon prior to the interview. SE2 provided an R script to obtain
regionalizations (10 slices along four directions) and kernels (0–200 km radii). NP added
regionalizations obtained in a prior study [Pic+22b]. SE1, on the other hand, worked
on the meteorological Veneto dataset, which consists of 72 locations and 7 variables
in Veneto, Italy. Parameter settings were obtained in a pilot session by SE1 and NP
together using an existing prototype [Pic+22b]. We computed outputs for a full factorial
of selected regionalizations and kernels for both datasets. In total, 42 settings were
available for the Veneto and 48 for the Colorado dataset.

Dissimilarity Measures. We chose appropriate functions together with our collab-
orators. For the unmixing matrix W, we use the MD-Index [Ilm+10], a specialized
comparison tool for unmixing matrices. For two kernels (K), we compute the difference
of their so-called Spatial Kernel Matrix [MBN22]. We compare two regionalizations (R)
by counting location pairs for which the region assignment is not identical.

Leaf Visualizations. We used three visualizations to represent R, K, and W (Fig-
ure 5.6). For R, we showed as multiple polygons representing the concave hull of regions
(Figure 5.6a). In tooltips, these were integrated into interactive Leaflet maps. For K, we
showed concentric circles representing the ring size (Figure 5.6b), also overlaying them to
the spatial context with Leaflet in tooltips (Figure 5.5-E). We visualized W as a tilemap
where each tile represented one latent dimension (Figure 5.6c). Tiles were colored in a
univariate continuous gray color map showing Moran’s I [Mor50], a measure for spatial
autocorrelation. High values of that measure point to large-scale spatial patterns, which
analysts might find easier to interpret. Tiles were ordered as the SBSS algorithm returned
respective dimensions. Tooltips of tiles showed static plots of latent dimensions overlayed
on OpenStreetMap.

SE1. NP guided SE1 to focus on SA because other than SE2, SE1 initially focused
more on the spatial relationship between regionalizations (R) and locations in the dataset.
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(a) R (b) K (c) W

Figure 5.6: Leaf visualizations for SBSS regionalization (R) and kernel (K) parameter,
and output (W).

Regarding SA, SE1 was interested in the influence of the kernel (K) parameter on the
output. NP pointed SE1 to a KW dendrogram configuration and explained that the red
color points to sensitive parameter settings. Almost all K clusters were colored red. As
they were wider in W, it indicated that the other parameter (R) exerts more influence
on the output than K. SE1 switched to average linkage to account for any outliers that
may skew the complete linkage criterion. Using this view (Figure 5.7), they found that
K with a radius 0–60 km was the least red compared to others. Hence, this setting was
most stable regarding the choice of R, with K=0–30 km a close second. SE1 explained
that most locations in the dataset are within 75 km, so a kernel up to 60 km will likely
capture most of the spatial dependency structure. SE1 also observed kernels up to 90 km
radius (three big circles on the left in Figure 5.7) generally showing wider clusters in W
than the smaller kernels due to their stronger red color. SE1 concluded that two levels of
spatial variability exist in the dataset.

Next, a RW configuration of the Discrepancy Dendrogram, was investigated (Figure 5.8).
Here, clusters of the 3-partitions chosen by altitude and precipitation were the most
stable, meaning they were more independent of the choice of K than other partitions.
This fact was initially surprising to SE1. However, SE1 reconciled it such that the two
partitions are similar in that they both separate Veneto’s mountainous and flat region.
However, another separation in the plane seemed necessary. 2-partitions with just the
mountain-flat separation were linked to wider clusters in the output, thus more sensitive
to the choice of K.

In the interview, SE1 voiced many positive sentiments. They found the visualization
“not difficult” to understand, and the construction of the Discrepancy Dendrogram was
logical and easy to follow. SE1 liked the interactive maps and that “you can analyze
the data by looking at different aspects in different ways.” “Half of the work is made
[with this tool],” so analysis time is saved compared to the “classical methods.” In sum,
SE1 found our visualizations “help evaluate the parameters” and identified an interesting
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Figure 5.7: KW Discrepancy Dendrogram (average linkage with some clusters collapsed,
cropped) for the Veneto dataset. The dashed box marks the most stable kernel setting
identified by SE1.

parameter subspace to consider for future analysis: Smaller K in higher resolutions, as
0–60 km kernels were found to be most stable. SE1 could see our visualizations working
for people who are “not completely expert [sic]” in SA. Based on these sentiments, we
think RQ1 and RQ2 can be answered positively.

SE1 thought that the Discrepancy Dendrogram is not very easy to interpret but also
attributed this to lack of familiarity with our approach and visualizations. Other than SE2,
SE1 did not confirm or challenge expectations about parameter importance/sensitivity,
as they find it necessary to compare multiple datasets before concluding anything.
In the same spirit, SE1 remarked that a proper data analysis pipeline uses multiple
complementing methods, prohibiting sweeping conclusions using our visualizations alone.

SE2. First, SE2 focused on a WK Discrepancy Dendrogram. SE2 observed many
red lines and asked if it was correct to conclude that those outputs are less sensitive to
kernel (K) choice, which it was. SE2 was then interested in regionalizations (R) and
switched to WR. There, SE2 observed a very salient pattern (Figure 5.9): Most of the
dendrogram was gray, indicating that cluster diameters match well between W and R.
Thus, R is an important parameter for the Colorado dataset. A few clusters showed blue
highlights, indicating clusters of sensitive R parameter settings. SE2 looked at one of
the clusters (red arrow in Figure 5.9), saw the same R combined with various K, and
considered the local dendrogram shape. SE2 concluded that two groups of W exist for
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Figure 5.8: RW Discrepancy Dendrogram (complete linkage with some clusters collapsed,
cropped) for the Veneto dataset. Dashed boxes mark the most stable regionalization
settings identified by SE1.

this R setting (10 horizontal slices): One using very “un-local” kernels (K) with a 100 km
hole and another group containing the dataset’s remaining K settings. Hence, the choice
of K matters a lot for this particular R setting. Other salient blue patterns were visible
on the dendrogram’s right side but not investigated by SE2. SE2 then returned to the
WK configuration, but set the leaves to show R and investigated how these parameter

settings were distributed in the dendrogram. They observed mostly neat clusters (by
SBSS output W) of 6 data cases and identical R in each cluster, which was another hint
that R is the more important parameter.

NP suggested looking at a parameter-focused dendrogram, after which SE2 changed it to
KW. Here SE2 suggested that one K setting (0–50 km radius) is much more stable than

the others due to its lighter color and wrongly concluded that R choice matters less for
that. While their first assessment (more stable than others) was correct, the second part
did not consider the magnitude of the cluster diameter difference in W. If SE2 would
have used min-max normalized distances Discrepancy Dendrogram (Figure 5.10), they
would have seen that also for that K, the cluster diameter difference in W was very
high in absolute terms. Finally, SE2 also considered RW to investigate the stability
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Figure 5.9: WR Discrepancy Dendrogram for the Colorado dataset. Blue lines mark
data cases with variation in W despite similar R. Closer inspection revealed that the
presence of a hole of at least 100 km size in associated K settings distinguishes these
cases (red arrow).

of R. Here, a completely different picture than for KW emerged: The lines touching
dendrogram leaves were gray instead of red, thus suggesting that less variation happens
within R settings than between them. This image was consistent with WR, underlining
the importance of the regionalization (R) parameter even more.

In the interview afterward, SE2 offered mainly positive comments. The visualization
is “very intuitive to use”, and it “speeds up analysis because one can see all parameter
combinations at once.” It “does exactly what it’s supposed to do” because “the color
pointed [them] to [data cases] where there was something going on” and, therefore, SE2
is “very confident in results obtained with this tool, I don’t doubt it.” They mentioned
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(a) Rank (b) Min-max

Figure 5.10: Rank and min-max distance normalization highlight different relations.
Note the enclosed circles’ color. With ranked distance (a), the small kernel is shown as
most stable of the three (lighter color). Min-max distances (b) show that the absolute
difference is low (saturated colors). Our visualizations offer more precise visual encodings
in addition to color hue for such comparisons (see, e.g., Section 5.6.1).

that “many observations would not have been possible without this [visualization]” and
that, therefore, it can be a qualitative complementary to the quantitative methods they
use in their research. E.g., as a more systematic replacement for the trial & error they do
now. SE2 confirmed their suspicion that R is the more important parameter using our
visualizations. Again, we think these sentiments strongly support both RQ1 and RQ2.

SE2 also mentioned that the Discrepancy Dendrogram was not particularly easy to
understand. I.e., the syntax, so to say, was clear (red, gray, and blue pointing in the
direction of wider clusters), but translating that into actionable steps in parameter
analysis was difficult. SE2 expects that this effect will get smaller with more familiarity
with the visualizations. Finally, SE2 admitted they mostly looked at the tilemap in
the leaves to judge W similarity. Since tiles contain a summary (Moran’s I) of actual
maps, the visualization may be misleading. A possible remedy could be a glyph design
incorporating a derived feature and map similarity.

5.7.3 Microclimate Simulations (RQ3)

To demonstrate that the approach used in our prototype is transferable to other problem
contexts (the goal of design studies [SMM12]), we applied it to microclimate simulation
results [Vuc+22]. Such simulation models predict meteorological variables (e.g., air
temperature or humidity) in a very small area, typically for a single street or a building.
Microclimate simulations are critical nowadays as the climate crisis pressures cities and
real estate developers to adapt to changing climate conditions. Usually, stakeholders, like
city planners and architects, use existing simulation models and do not develop them
themselves. Hence, parameter space analysis so far was mostly done by studying derived
features (e.g., maximum temperature) with respect to grid size, often carried out with
visual inspection, and computing relations (e.g., correlation) between individual variables.
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Analysts have certain expectations about parameter relations. These come partially from
known model limitations (e.g., the model does not perform well in extreme conditions)
and partially from the modeled physical reality (e.g., the humidity of cold vs. hot air or
wind chill effects).

In the conducted session, two authors (NP, JS) of this paper met with a microclimate
simulation expert ME1, who has a Ph.D. in civil engineering and was recruited from the
authors’ professional network. JS controlled the prototype and suggested findings that
ME1 assessed, while NP took notes.

Dataset and Parameter Settings. The experts’ use case was to analyze the climatic
conditions around a potential building (available as a 3D model) in several cities, seasons
and meteorological conditions (called a scenario) to find the best location. The tested
cities were Vienna, Helsinki, and Gothenburg in various seasons. ME1 computed a
dataset containing 12 parameter settings and respective outputs. The low number of data
cases follows the simulation model’s computational demands as a single run takes several
minutes to a couple of hours. The four outputs were wind speed (OW ), temperature
on the surface (OS) and in the air (OA), and humidity (OQ) at 6 am after a simulated
interval of 24 h. The output values are spatially distributed on a grid. Parameters of the
model were air temperature (PA) and humidity (PQ) as time series over 24 h, and wind
speed and direction (PW ). We agreed to use Euclidean distance to measure similarity.

Leaf Visualizations. Three visualizations were used to show the model’s parameters
and outputs, both as leaf and tooltip visualizations. For the spatially distributed outputs
(OW , OS , OA, OQ), we used heatmaps with univariate color scales of varying hue. Time
series (PA, PQ) were shown as line charts. Wind speed and direction were shown as
arrows, with speed as length and direction as rotation.

ME1. In the beginning, we asked ME1 about the most important output in the dataset,
which ME1 answered to be the surface temperature (OS). The goal was to identify a
scenario where OS is both low and stable so as to not be a threat to the human circulatory
system. At the same time, general parameter-output relations were of interest. To achieve
these tasks, JS set up a Discrepancy Dendrogram with OS as primary distance and cycled
through parameters as alternative distance. We started with a OSPW configuration, i.e.,
compared surface temperature output to the wind (direction and speed) parameter. The
dendrogram showed many red lines, indicating wider clusters in PW and thus generally no
strong association between PW and OS . JS changed from ranked to min-max distances to
see if the pattern persists when the magnitude is considered, which it did. This relation
was expected for ME1. We also observed an OS outlier with temperatures up to 36 °C,
which seemed unexpected (red arrow in Figure 5.11). ME1 recalled that “the simulation
model in question aims to capture extreme conditions in summer, like overheating, and
there is really the question of how it performs in other conditions and different climates.”
ME1 concluded that the outlier might be a failure case of the model. Later analysis
showed that the presumed model failure was related to extreme temperatures in the PA
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parameter. However, it became clear that wind alone “does not really make a difference”
when it comes to surface temperature.

JS then switched to other parameters. Air temperature (PA) was strongly correlated, as
expected (Figure 5.12). A similar picture emerged for humidity (PQ), except for a group
of three scenarios (Figure 5.11-A) that arrived at similar OS with significantly varying PQ

settings. ME1 noted that to determine the actual impact of PQ here, one has to account
for the different seasons and cities. This observation was noted as something to investigate
later, as, at the time, season and city were not displayed in the prototype. JS then
proceeded to compare other outputs with parameters. Our visualizations showed, and
ME1 confirmed, the known relationship between humidity and air temperature. The next
interesting observation came from the connection between wind and temperature. Wind
parameter (PW ) and output (OW ) were not strongly correlated, and air temperature
(PA) was identified as another relevant factor (red arrow in Figure 5.12a). Regarding how
temperature could influence wind, ME1 mentioned horizontal and vertical mixing effects
but that those would be smaller than the wind-to-temperature effects. ME1 speculated
that some correlations might come from the used 3D grid slices being on pedestrian level
(1.8 m) while surface temperature is only valid for the slice at 0 m.

Asked about disadvantages or improvements, ME1 mentioned not picking a winning
location for their use case because the city and season were missing in the visualization.
NP checked together with JS later. Of all the surface temperature (OS) clusters (A–C
in Figure 5.11), OS was least sensitive to air temperature (PA) in the three scenarios
enclosed by A. They belonged to Helsinki (2/3) and Vienna (1). Thus, Helsinki could
be identified as the most suitable choice due to the more constant surface temperature.
This choice is also consistent with the latest report of the Intergovernmental Panel on
Climate Change [Gut+21], which predicts more stable mean temperature for Northern
than Central Europe.

To summarize, we could apply our visualizations in a domain they were not originally
designed for in the following way. We could find a suitable location for the building, which
was the main goal for ME1, thus solving this domain’s SA task. ME1 could reconcile
visualization images with domain knowledge and find interesting relations to investigate
in the future, like the humidity parameter’s impact. We see this session as evidence to
support RQ3, that our visualizations can be transferred to other contexts.

5.8 Limitations
As we rely on cluster diameters, the particular choice of nested partitions will greatly
influence our sensitivity index, visualization image and, ultimately, the analysis outcome.
The partitions are in turn influenced by the dataset, dissimilarity measure, clustering
algorithm, and its parameters. We took care to select reasonable defaults, but they may
not work for every situation. While it may be a demanding task, truthful clusterings
can be obtained (cf. Section 5.3.3) and the particular groupings could be modifiable by
the analyst. Another consequence of relying on relative cluster diameter differences for

193



5. Visual Sensitivity Analysis for Spatial Blind Source Separation

A

B C

Figure 5.11: OSPW Discrepancy Dendrogram used for microclimate simulations. Red
lines indicate wider clusters in PW and thus little influence of that parameter on OS .
The red arrow marks a data case suspected to be a model failure. Data cases enclosed by
A were also investigated with a OSPQ configuration. Data cases enclosed by A–C were
considered for the final location choice.

SA is that the sensitivity index likely changes when new data is considered, thus the
visualization image may be unstable with regard to additions to the underlying dataset.
While that may seem like a big constraint, we argue that the same is true for visual SA
of multivariate parameters: If they are sampled too coarsely or in too narrow intervals,
then the analysis outcome may change a lot when the previously excluded parameter
space is considered.

Our approach (Section 5.5.4) roughly corresponds to a one-at-a-time sensitivity index,
i.e., a local method. Saltelli et al. [Sal+19] argue that local methods are only appropriate
when the model under investigation is demonstrably linear. We did not confirm whether
SBSS (Section 5.7.2) or the microclimate simulations (Section 5.7.3) are linear models.
However, we do not see this as an issue for two reasons. First, local indices in the SA
literature make precise quantitative statements for the whole parameter. As we defined
our index only for subsets of data cases, it does not do that. Second, we developed
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(a) Subset Sensitivity View (Section 5.6.3)
of data cases in Figure 5.11-A.

(b) Shepard Matrix (Section 5.6.4) of micro-
climate dataset.

Figure 5.12: Subset Sensitivity View (a) of cluster in Figure 5.11 shows that air tempera-
ture PA is be the driving parameter for surface temperature OS , as expected. Shepard
diagrams of air-related parameters/outputs in Shepard Matrix (b) show that this relation
holds for all data cases.

the index for visual guidance in an interactive visualization. As all relevant data cases
are visible in detail at any time, the analyst may consider much more context and
existing domain knowledge than they would when interpreting only a single number, as
demonstrated in Section 5.7.

5.9 Discussion and Conclusion
Based on requirements and observations in the context of SBSS, we developed a data type
agnostic approach to visual SA. It only requires dissimilarity measures and thus works
for complex parameters and outputs alike. The core innovation is measuring variation
in parameter settings and outputs by cluster diameters. SA then becomes possible by
looking at the difference of the same cluster’s diameter in parameter and output space.
Evaluation participants expressed high confidence in our visualizations. Future work
may improve this paper’s proposal by accounting for noise or simultaneously supporting
multiple parameters.

The Discrepancy Dendrogram and supporting visualizations (Section 5.6) were also
received very well by evaluation participants, especially considering the task complexity
and short training time (around 30 minutes). The construction of the Discrepancy Den-
drogram was logical for all participants, and the prototype provided sufficient interactions
and levels of detail. The successful heuristic evaluation (Section 5.7.1) further supports
this evidence. SBSS and microclimate simulation experts could confirm suspected or
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expected parameter-output relations with our visualizations, while mentioning the need
to familiarize themselves more with our approach. E.g., the regionalization parameter R
is more important for SBSS than the kernel configuration K (suspected by SE2), or that
surface temperature mainly depends on air temperature (expected by ME1). Further,
they could make high-level decisions (building location, ME1), find new relevant param-
eter subspaces (smaller kernels, SE1), or just obtain interesting observations (kernels
with holes, SE1 and SE2). Considering the utility of the Discrepancy Dendrogram it
will also be interesting to apply our approach to other visualization idioms, e.g., to DR
scatterplots (Section 5.3.3).

We noted, e.g., during introductory explanations, that some participants found it mentally
demanding to reason simultaneously about 1) groups of elements instead of single elements
and 2) two distances within a group of elements. This issue is, to some extent, inherent
to the problem we want to solve. On the other hand, we think rephrasing SA or finding
visual representations so that analysts can reason about single elements instead of groups
has much simplification potential. Achieving this would allow even more powerful SA
visualizations potentially applicable to many contexts (Section 5.7.3).
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CHAPTER 6
Discussion

In this chapter we will discuss how our work advances the research questions formulated
in Chapter 1. Section 6.1 focuses on the research questions, Section 6.2 on the overarching
contributions, and Section 6.3 on limitations and gaps of our research in general. To
repeat, these are our first-author publications that this thesis builds on:

P1 Nikolaus Piccolotto, Markus Bögl, Theresia Gschwandtner, Christoph Muehlmann,
Klaus Nordhausen, Peter Filzmoser, Silvia Miksch: TBSSvis: Visual Analytics for
Temporal Blind Source Separation. Visual Informatics, vol. 6, no. 4, 2022. DOI:
10.1016/j.visinf.2022.10.002. Chapter 3 of this thesis.

P2 Nikolaus Piccolotto, Markus Bögl, Christoph Muehlmann, Klaus Nordhausen,
Peter Filzmoser, Silvia Miksch: Visual Parameter Selection for Spatial Blind Source
Separation. Computer Graphics Forum, vol. 41, no. 3, 2022. DOI: 10.1111/cgf14530.
Chapter 4 of this thesis.

P3 Nikolaus Piccolotto, Markus Bögl, Christoph Muehlmann, Klaus Nordhausen,
Peter Filzmoser, Johanna Schmidt, Silvia Miksch: Data Type Agnostic Visual
Sensitivity Analysis. IEEE Transactions on Visualization and Computer Graphics,
vol. 30, no. 1, 2024. DOI: 10.1109/TVCG.2023.3327203. Chapter 5 of this thesis.

6.1 Research Questions

(RQ1) What are the characteristics of effective guidance for Temporal and
Spatial BSS parameter selection? We tackled this research question in one way
or another in all our publications. In publication P1, we tackled the question for one
TBSS method (gSOBI), where the tuning parameter space included one weight (0, 1) and
two lag sets. More guidance was required for the latter than the former as the weight
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parameter describes a trade-off between the two methods at its extreme points (vSOBI
and SOBI, respectively). From the involved equations and simulation studies it was
already known that vSOBI dominates SOBI below a weight of around 0.9. However, the
choice of lags depends on the dataset at hand. To this end, we proposed a multiple-view
system consisting of a PCP to filter lags, a multivariate autocorrelation function plot to
investigate the autocorrelation of input variables at a lag, a line chart and a scatterplot.
The PCP allowed to filter lags by their correspondence to calendar granules, such as
days, weeks or months. Several derived variables per lag were encoded in the PCP axes,
such as the maximum absolute autocorrelation of any input variable. Analysts could
thus approach the problem in smaller steps: First they select the calendar granule where
they expect most autocorrelation, thus filtering lags down to those. Second, the PCP
allows to further reduce the candidate lags via filtering to an amount of granules (e.g.,
1–6 months) or to some range of the derived variables. The remaining visualizations
(line graph, scatterplot) allowed to investigate individual lags in detail as a last step, if
necessary. In the expert interviews, especially the interactivity and linked views were
considered very useful. Although sometimes challenging in the beginning, the interactive
visualizations allowed to dig through the available parameter space faster than it would
have been possible in R. However, that alone was not enough for every participant, as one
in particular would have preferred the strongest possible guidance degree. The reason for
that is likely that the per-lag derived variables are only a proxy for what the guidance
should really be based on, which are properties of the unobserved latent dimensions. In
addition, the ability to compare competing parameter settings and associated outputs in
detail was seen as very useful. We summarize how that was achieved as part of the next
research question.

In publication P2, we considered guidance for SBSS parameter selection. In that non-
stationary model (Section 1.1.3), the tuning parameters were a regionalization (a partition
of locations) and a kernel (a neighborhood definition). As in the TBSS case, any guidance
metrics should actually be computed on latent dimensions than input variables, as far
as BSS theory goes, because a kernel should be selected such that it encapsulates the
spatial dependence of different latent processes. As a non-stationary scenario requires the
analyst to partition the spatial dataset into coherent regions, automatic regionalizations
into a pre-specified number of regions (2–8) were considered extremely helpful. Especially
so because geochemical surveys often consist of several hundred locations and dozens of
variables, and thus manual regionalizations are time-consuming. Analysts still had to
choose the number of regions. Whether a region was too small (especially in combination
with a particular kernel choice) could inform that choice as well as how close the covariance
of variables in a region is to the sample (i.e., non-spatial) covariance matrix. While not
part of our design nor suggested by any study participant, region homogenity/heterogenity
measures as used in various regionalization algorithms would have been another avenue
towards that end. Similarly, analysts had to choose the number and extent of kernels.
As the latent processes are a-priori unavailable, we again used the input variables as
a proxy for them. To guide the kernel selection process, we employed superpositioned
variograms. Variograms are an established visualization in spatial statistics, showing how
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much a variable changes with distance. Selecting kernels was thus reduced to visually
segmenting the variograms. Again, although it was not part of our design nor suggested
by study participants, we may have found suggestions for kernel sizes by repurposing
a time series segmentation algorithm. In expert interviews, SBSS experts praised the
regionalization guidance and wished for something similar for the kernel parameter. A
geochemist confirmed boundaries of the regionalization guidance for one of the datasets
we used and was impressed and excited by patterns found in latent dimensions.

In publication P3, we focused on sensitivity analysis for SBSS parameters. It relates to
parameter selection guidance insofar as less effort needs to be put into selecting parameters
that do not influence the output much. Another way how sensitivity analysis can influence
parameter optimization is that often analysts will prefer the output obtained from a
stable parameter range. As it was unclear to what extent numerical sensitivity analysis
approaches are applicable to the spatial data found in SBSS parameters and outputs, we
used cluster diameter differences to quantify stable (cluster is smaller/narrower in output
space) and sensitive (cluster is smaller/narrower in parameter space) parameter settings.
These diameter differences were encoded in a colored dendrogram and supported by
other visualizations. The VA prototype was evaluated with two SBSS experts and one
expert in microclimate simulations. They were able to identify stable/sensitive parameter
ranges, more and less important parameters, and could make high-level decisions or find
parameter ranges to investigate next.

To summarize, what were the characteristics of effective guidance? Based on P1–P3
we can provide another confirmation for thirty years of visualization research, that
interactivity is a major factor; the ability to sift through large amounts of data “speeds
up analysis because you see [everything] at once” [Pic+24, p. 8]. In P1 specifically,
this could be achieved by rapidly changing between multiple levels of detail while in
P3 we quite literally showed everything at once. Comparing alternative parameter
settings and their outputs was also very helpful as it allowed to investigate the effect
of a single lag or kernel, if one was inclined to do so (P1, P3). In P2, sensible parameter
settings suggestions (regionalizations) were considered very helpful. For the kernel
parameter, we reduced a tough abstract task (define number of kernels and their extent)
to a simpler task on a concrete visualization (segment the variograms). Seeing the
parameter settings in their spatial context, i.e., next to country borders and overlaid
on satellite images, was also advantageous. Finally, the prototype suggested in P3 was as
a whole intended to guide parameter selection, so combining multiple PSA tasks in
order to support one is very likely beneficial.

(RQ2) Which VA methods can be utilized to explore ensembles of temporal
and spatial BSS components? In publication P1, we employed several strategies to
that end. We used DR scatterplots to show similarities of whole ensembles and individual
components. To ensure that every data point in the scatterplot is visible and clickable,
we removed overlaps by regularizing everything onto a grid. To show projection errors,
mouse-over on a particular data point triggered a size change in the marks of other data
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points based on their similarity. The two lag set parameters were shown in separate
DR scatterplots, so analysts could use both the output and the parameters to select a
TBSS method. The other strategy was the component overview, which is based on a set-
aware k-medoids clustering. Cannot-link constraints ensure the set-awareness by always
grouping components of the same parametrization into separate clusters. Therefore, only
components of different methods are grouped together and the resulting medoids can
represent all existing components well (depending on the choice of k and available TBSS
methods). To find differences between a couple of methods and their components, we
suggested i) sorting components by a user-selected degree-of-interest function, ii) stacking
components of a method vertically, and iii) connecting components of two methods by
lines whose thickness encoded similarity (time series slope graph). Analysts could always
zoom into specific time intervals. This visualization was deemed “easier [to use] than
looking at a correlation matrix” [Pic+22, p. 63].

Publication P2 focused completely on the parameter selection. The developed VA
prototype did not show components. For our evaluation we mapped them using R and
ggplot [Wic16] and printed them on paper.

In publication P3, component ensembles are shown on a coarse level with a hierarchical
clustering (according to the unmixing matrix, the regionalization or the kernel parameter)
and concise leaf visualizations in the dendrogram. Specifically, the leaf visualization
was a tilemap depicting each component’s derived feature (Moran’s I, a measure for
spatial autocorrelation). Similar-looking tilemaps thus pointed to similar SBSS outputs,
although an evaluation participant remarked that two ensembles with similar Moran’s I
but different spatial distributions of data will look the same. In addition to the tilemap,
a detailed plot of a component was available as tooltip. Our work in P3 thus allowed to
explore component ensembles through the similarity structures in SBSS parameters and
outputs, similar in spirit to the DR scatterplots in P1.

Thus, using the similarity structures found in SBSS parameters and outputs
(P1, P3) suggests VA methods to explore BSS component ensembles. For example, they
can be visualized directly (time series slope graph) or they can be fed into appropriate
data mining algorithms first (set-aware clustering, DR embedding). Also for this research
question, the ability to interactively switch between multiple levels of detail was vital
to the analysis process.

(RQ3) How can we characterize tasks BSS analysts carry out, especially
to explain latent temporal and spatial dimensions? Since publications P1–P3
are design studies, we published a task characterization in each of those papers. In
P1 we suggested rather low-level tasks, using Brehmer & Munzner’s task typology to
describe what data BSS analysts need to see and compare. The important parts are,
unsurprisingly, the parameter settings, latent dimensions and their loadings (i.e., the
unmixing matrix). While the specific characteristics of latent dimensions may vary (e.g.,
temporal, spatial, spatio-temporal, or other data types altogether) we believe that the
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task characterization is valid for many BSS models and may be transferred to other
latent variable models, such as PCA.

In publication P2, we described necessary tasks for non-stationary SBSS parameter
selection, which arise from the theoretical and practical considerations in that process.
For instance, the mathematical formulae in SBSS assume disjoint regions and kernels,
respectively, so that property must be ensured. Further, their sizes have to complement
each other, because a kernel suitable to a small and densely populated region may not
capture enough of a point’s neighborhood in a more sparsely populated region. Finally,
they have to be sensible for the application domain and the data at hand. For instance,
a region containing locations on both sides of a sea could be pointless in a geological
setting, as the soil may have different properties on the respective shores. Consequently,
the tasks we proposed are quickly and efficiently enter parameter settings, balance region
and kernel size and reconcile possible regions and kernels with [the analyst’s] domain
knowledge.

In publication P3, we proposed a novel way to carry out visual sensitivity analysis, based
on a sensitivity index derived from a hierarchical clustering. The tasks we proposed in
that publication are naturally confined to this particular analysis process. Specifically,
to do it successfully, analysts have to compare the association between parameters and
outputs to find parameter/output pairs that are worth investigating. For any particu-
lar parameter/output, analysts have to assess its overall variation, i.e., see contained
similarity structures such as outliers or tight clusters. This helps identifying groups of
data cases with low/high variation in a parameter/output to compare variation between
parameters and outputs, both overall and for a group of data cases. Groups of data cases
with more/less variation in the parameter/output space are exactly the stable/sensitive
settings analysts are looking for.

Regarding necessary tasks to explain latent dimensions, i.e., relating patterns in latent
dimensions to (possible) physical processes causing them, or tasks around the DR process
itself we did, unfortunately, not propose much so far. We suggested a quantification
framework to measure the association, e.g., between patterns and parameter settings
[PBM23], which may be used for that purpose, but more research in that direction is
necessary.

(RQ4) Can we adapt approaches suggested to explain multivariate DR to
temporal and spatial latent dimensions? Unfortunately could only partially inves-
tigate this research question. To some limited extent, our work in existing publications
can support it. E.g., BSS experts expect that a stable output is more likely representative
of the “real” underlying processes. Thus, outputs and patterns sensitive to particular
parameter settings may be excluded from the DR process to begin with (P1, P3). We also
only scratched the surface regarding the prevalence of input variables in time and space.
It should be possible to add input variables to the framework presented in [PBM23], in
which case the association between patterns in the output and input variables could be
quantified. In publication P1, we built simple comparative visualizations between input

209



6. Discussion

and latent temporal dimensions, which allows to visually match patterns. However, we
have to leave specialized visualizations for these tasks for future work (Chapter 7).

(Overall RQ) How can we use VA best practices to aid usage of BSS techniques
in time and space? Summarizing the answers obtained for individual sub-questions,
we can state that seeing all relevant data in context and the ability to interactively
manipulate them proved incredibly useful. Experts mentioned this as an advantage
without exception. While not a particularly exciting result, due to its lack of novelty (cf.
Section 1.1.1), it shows that also BSS can be tackled with the principles first laid out a
few decades ago. Exchanging complex tasks on data with simple tasks on visualizations
is another way to phrase the benefits of visualization/VA, and it was very successful,
e.g., in the context of BSS parameter selection. Putting the two together allowed
to efficiently compare BSS parameter settings and outputs, thus leveraging existing
similarity structures in the data both through comparison visualizations and data mining
algorithms.

6.2 Contributions

In this thesis, we investigated how BSS, a latent variable model, may support the analysis
of multivariate temporal and spatial datasets. A limitation of our research in that regard,
which we discuss in more detail in Section 6.3, was the lack of front-line analysts in most
evaluations. In P2, we could collaborate with a geochemistry expert; therefore, that
publication carries the most information to that end. In components identified with
our prototype, the expert was able to identify patterns that were especially interesting
considering that the dataset did not contain the chemical elements that should be involved
in said pattern (e.g., mineral reservoirs) or, generally, considering that the most interesting
elements were missing in the dataset. What BSS was able to do, therefore, is highlight
known patterns using fewer variables, which has monetary implications when it comes to,
e.g., sample collection and chemical analysis.

Much of our research involved solving challenges associated with BSS itself, such as
selecting proper tuning parameters or exploring latent components. Doing so was a
prerequisite to tackling the previous question. We covered these in the introduction
and related work chapters (1 and 2, respectively). It was necessary to support vPSA
tasks [Sed+14] for BSS tuning parameters, which we could explicitly achieve for the
tasks optimization and sensitivity for SBSS (P2 and P3, respectively). For TBSS (P1),
participants found that the interactive visualizations help selecting parameters, but we
have less evidence that they also lead to suitable outputs than, e.g., in P2. The task to
find outliers is, in our opinion, handled by the various clustering approaches we devised
(P1, P3). While partitioning would be likely valuable for BSS analysis as well, that task
is impeded by the fact that automatic and representative random sampling of the tuning
parameter space is challenging (or even undesired) and was not an avenue we pursued.
A reasonably accurate surrogate model for BSS would likely be extremely helpful in
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investigating the tuning parameter space, but building such a model is also hampered by
the difficulty in automatic sampling. A surrogate model would allow a broader range of
parameter space navigation strategies and enable the fitting PSA task. The uncertainty
task would become relevant when we consider BSS as part of a larger data pipeline
for prediction. Regarding exploring latent components, a helpful framing of the issue
was in terms of set relation tasks [Als+16]. The main obstacle to those is that latent
components are not perfectly comparable, i.e., in some aspects, they are more alike and
less so in others. We proposed an analysis framework based on fuzzy sets [PBM23] to
that end but did not implement it in any of our VA prototypes. Instead, we focused on
visual comparison and other data mining approaches, such as the set-aware clustering in
P1. In our research, we partially touched upon other challenges, like explaining latent
components.

A common theme in our research is leveraging similarity information in the data in various
ways to support analytic tasks. In P1, the slope graph shows the Pearson correlation
between time series and thus allows to verify the similarity of individual components
and their sets simultaneously. The set-aware clustering uses similarity information about
components to cluster them, but with additional constraints necessary to respect group
structures. It thus highlights the main trends and outliers in the components. In P2, the
regionalization guidance uses similarity information between measurements at locations
to form larger regions. To select a kernel size, the analyst considers the similarity of the
variables’ spatial dependence shown in the variogram. In P3, we use similarity information
to enable sensitivity analysis on parameters and outputs that are semantically more
complex objects than numbers. These are our success stories. An example where using
similarity data did not prove advantageous was the multidimensional projections in P1,
which evaluation participants rarely used. While the amount of data they considered
may be part of an explanation of why that happened, another possible theory is that
the plots did not show the data well enough. Each dot in the projection represented a
set of components but did not depict the actual components’ data. A similarity-based
layout using one glyph for each component may be more concise but comes at the cost of
scalability.

Finally, we discuss the transferability and scalability of our contributions. The task
description in P1 likely applies to other latent variable models or BSS of other data types.
It may guide, e.g., the development of a VA solution using a geographic PCA variant.
We expect the proposed visualizations and data mining techniques in P1 to work when
the data are groups of time series that must be compared. Our work in P2 is rather
specific to SBSS. The automatic regionalization may be applied to geographic datasets
in general, but the technique itself is not our contribution as we adapted an existing
algorithm. The way how kernels are selected by using the superpositioned variograms
as a guideline may be helpful for other geographically weighted techniques, such as
the scalograms by Dykes and Brunsdon [DB07], which also often depend on a spatial
neighborhood definition. The work proposed in P3 can transfer to other contexts, as we
showed in the evaluation, as long as the dissimilarity measures are appropriate for the
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data. However, when suitable features can be derived, we recommend trying that first,
as more widely known visualization idioms (e.g., scatterplots, histograms) and numerical
approaches (e.g., linear regression) exist for multivariate data that may be leveraged.
Our proposed approaches were designed for the real-world datasets we had available. In
P1, the financial dataset had 3 139 time steps and 23 variables, while the medical dataset
consisted of 2 500 time steps and 8 variables. In P2, the two datasets were the GEMAS
geochemical survey [Rei+98], which consists of 2 108 locations and 18 variables, and the
Colorado survey (960 / 27) [SEK10]. While these limits do not accommodate all possible
datasets, we expect them to cover a reasonable subset. For P3, we considered 42, 48
(SBSS), and 12 (microclimate) parameter/output combinations, respectively. We added
interactions to the main dendrogram visualization that should scale it better to larger
datasets, but there will be a point where it will be too cluttered. Other visualization
idioms, possibly based on DR scatterplots, could help in this regard.

6.3 Limitations

We discuss limiting aspects to our thesis’ contributions in this section. We use the Design
Study Methodology pitfalls and the Nested Model’s threats to validity (cf. Section 1.1.2)
as our main guidelines. Sedlmair et al. [SMM12] propose 32 possible pitfalls that may
happen in various stages of a design study. These range from collaborating with the
wrong people (PF-3 ) to writing the paper chronologically instead of focusing on results
(PF-31 ). Tamara Munzner [Mun09; Mun14] suggests threats to each level’s validity in
the Nested Model along with possible ways to counter them. In informal terms [Mun09,
p. 921] the threats are “they [the target users] do not do that” (L1), “you show them the
wrong thing” (L2), “how you show it does not work” (L3), and “your code is too slow”
(L4).

6.3.1 Participants

User-centered design is the prevailing design paradigm in visualization, although others
exist (e.g., algebraic design [KS14]). Therefore, guidelines emphasize the importance of
choosing the right people to collaborate with and ensuring that an important and recurring
problem of theirs is solved with visualization research. Munzner’s L1 threat (“they do not
do that”) and pitfall PF-10 (“no real/important/recurring task”) of the Design Study
Methodology are two examples of that. There is little doubt that visualization research
was necessary and that the problems we tackled are important for someone employing
BSS. However, one could argue that we did not actually work with “front-line analysts”
[SMM12]. Our collaborators in this thesis, when it came to designing and evaluating
proposed VA approaches, were mainly researchers in statistics and mathematics who
developed novel methods, such as the discussed BSS methods. Their main job was not
the analysis of data that they collected themselves but to propose, develop, prove, and
implement statistical approaches. We think that working with statistics researchers was
appropriate to answer our VA research questions. However, if the goal was to develop
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interactive visualizations that facilitate using BSS in general, then the question remains
whether our selection of participants is sufficiently representative of the expected end
users.

6.3.2 Evaluation, Long-Term Usage, and Gaps

As discussed in the introduction (Section 1.1.1), visualizations are a tool for data analysis.
Tool designers are generally interested in whether their proposal is effective. So, to
validate against the L1 threat, Munzner [Mun09, Sec. 3.3] proposes to report the designed
tool’s adoption rates. To validate against the L2 threat (“you show them the wrong
thing”), we chose expert interviews for their practicality, but Munzner and also others
[SP06] call for long-term field studies. In such studies, researchers observe how front-line
analysts use the designed tool over a longer time frame, using ethnographical observation
methods, interviews, surveys, and automated activity logs.

Following the previous discussion, it is a bit unclear who should be observed in such
a manner (L2). As we designed with statistics researchers, they would be the natural
choice, but BSS-supported data analysis is not something they need to do frequently
(pitfall PF-10 ).

Adoption rates are also tricky to measure (L1, L2). Our research team published the
statistical software on CRAN1, a platform to host R packages, and the VA prototypes on
GitHub2, a platform to host open source software. The only signal we can get from those
platforms is the number of downloads, which is not equal to the number of installations
or the number of times someone started the tool. Telemetry, i.e., collecting more detailed
usage data in situ and sending them back to the developers, is a strategy to obtain
activity logs but comes with privacy concerns. One may also only measure what is done,
not why, so telemetry would need to be supplemented with online surveys and, if possible,
interviews. It is not impossible, but long-term studies are challenging with open-source
software for a diverse user base.

Another challenge to those is the technical implementation of our VA prototypes. RStu-
dio3, the popular development environment for R [R C23], offers support for plug-ins
in the form of “Shiny Gadgets.” Shiny4 is a web application framework for interactive
applications in R. Shiny Gadgets builds on Shiny to extend the functionality of RStu-
dio. It would have been best to implement our concepts as Shiny apps or Gadgets to
increase the likelihood of long-term adoption. As we were inexperienced with the Shiny
framework, we expected that using it would slow us down (impeding rapid prototyping
and development, PF-22 ). In the worst case, we may get stuck later when realizing
that a crucial function does not exist or that we need a particular implementation of
an algorithm in another programming language. In hindsight, the latter may have been

1https://cran.r-project.org/ (accessed 15th May, 2024)
2https://github.com/npiccolotto?tab=repositories (accessed 15th May, 2024)
3https://posit.co/products/open-source/rstudio/ (accessed 15th May, 2024)
4https://shiny.posit.co/ (accessed 15th May, 2024)
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unfounded because it was more likely that no implementation existed at all. This was
the case, e.g., for REDCAP [Guo08] (re-implemented) and CorrelatedMultiples [Liu+18]
(passed). Nonetheless, our technology stack was a web server backend in R and a frontend
in JavaScript for P1 and P2, while P3 did not have a backend. As we did not ship the
prototypes integrated to RStudio, potential users must install, configure, and run, i.e.,
deploy, our VA prototypes on their own, which may be daunting and time-consuming.

The previous paragraph described a possible gap between visualization research and
applying results in practice. This gap is discussed in the visualization community, e.g., in
the VisGap workshops held since 2020 at the EuroVis conference. Topics included design
approaches [Jän+20; Bra23] or how to provide visualization research as software [Hen23]
and to prolong the life of software artifacts [Ise22]. In our research for this thesis, we
encountered several gaps in addition to the previously described deployment gap.

Deploying software is one part, but since visualizations transform data into images,
potential users must also convince the tool to read their dataset. This is likely not an
issue when the tool is shipped as a plug-in, as it will either have access to the program’s
runtime environment or get the data passed as an object. If the tool is separate from
the usual analysis environment, one can use well-defined open data exchange formats,
such as comma-separated values (CSV) or JavaScript Object Notation (JSON). These
two are text-based and may not be amenable to larger datasets, and a binary format
would be more prudent. Either way, the onus is on the analyst to convert their dataset
to the specified format. Automatic conversion software could be developed and provided,
but the analyst’s task is still to find, install, and run that converter. We call this the
transmission gap and expect it to especially apply to P3, where our prototype reads
an elaborate JSON file and requires many suitable images to be generated, too. The
transmission gap may also work in the other direction: The derived data must get out of
the tool and into the next, creating a new transmission gap.

Then, we see a certain interactivity gap in the sense that participants (statistics researchers)
praised the interactivity of our prototypes (compare Section 6.1) but do not use interactive
visualizations themselves in their work. It is not even about bespoke coordinated multiple-
view systems but basic plots like a dynamic map with symbols. The main issue we see
here is ergonomics. One can render an interactive scatterplot in RStudio via a Shiny
app. But doing so [Hen23, Fig. 1] requires writing about 20 lines of code, using two
libraries, and the result is displayed in a separate window. The example shown on the
Shiny homepage at the time of writing even has around 60 lines. Certainly, that is too
much to ask of someone who reports that they use ggplot [Wic16] only when they
need “fancy images for the paper,” as one participant in P1 phrased it. Compare this to
calling plot(iris) that is one line, without libraries, and shows the result in RStuio’s
designated Plots area next to the R code, where most plots reside. Hence, to bring the
advantages of interactivity to this user group, it seems promising to aim for the same
affordances as R’s built-in plot function provides:

1. The code to create the plot must fit in one line.
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2. One function must cover most plotting needs. Multiple dispatch can facilitate this
point, which is also how R’s plot behaves: The rendered image depends on the
data type passed to the function.

3. Ideally, it requires no other parameters than the object holding the data. That
entails not only the visualization idiom (e.g., scatterplot matrix or PCP) must be
selected but also sensible defaults for its parameters.

4. The output must be shown where all other plots are, too.

However, that indicates yet another gap. The above is not possible without changes
to R (adding another function to the base package) or RStudio itself (showing Shiny
in Plots area). RStudio is developed by Posit Software, PBC, and published under
the GNU Affero General Public License (AGPL) in version 3. While one may fork the
RStudio repository5 and add the required changes, these changes need to be integrated
back into the main repository to benefit everyone. RStudio is also a complex and large
software project itself. Hence, we anticipate that (possibly significant) resources from
Posit Software will be required to create the necessary modifications. If not, then they at
least need Posit’s approval. We call this the jurisdiction gap, a gap that visualization
researchers cannot bridge just with their own efforts.

That being said, it is only point 4 in the list above that creates the gap and one may
choose to not tackle it for practical reasons. The existing abstractions and interfaces can
still be extended, which is mainly ggplot, given that visualization researchers do not
have jurisdiction over the R base package. ggdist [PK20], the probabilistic grammar of
graphics, or ggnetwork [TBH17], which extends ggplot to graphs, are great examples
for that.
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CHAPTER 7
Future Work

In the following, we discuss some open challenges that we identified and would like to see
pursued in the future.

Ensemble ∩ Set Visualization. BSS components represent complex temporal/spatial
data and they appear in groups. While we proposed some VA methods to visualize such
data (Chapter 3), we think the space of possible visualization designs at the intersection of
the two disciplines (presented in Section 2.3 and Section 2.4) is barely explored. Ensemble
and set visualization have more in common than they currently seem to realize. For
instance, one only has to partition a “traditional” ensemble by ranges of a parameter to
obtain complex data that also has categorical information attached. Coming from the
other side, one only needs more data available for set elements than a uniquely identifying
character sequence to, again, obtain complex data that also has categorical information
attached. Possible visualization designs are likely found in the product of visualization
approaches for ensemble datasets [Wan+19] and set-typed data [Als+16]. Alsallakh et
al. [Als+16, p. 253] also stated “visualizing sets in the context of other data types”,
“comparing multiple set families”, and “visualizing fuzzy and uncertain set memberships”
as open challenges that directly relate to our problem context [PBM23]. Wang et al.
[Wan+19], on the other hand, mention in their open challenges for ensemble data that
the ensemble dimension has not been covered by many papers, i.e., that VA for multiple
ensembles is understudied. Thus, figuring out what works will benefit both disciplines
and also further advance our second research question.

VA for Regionalizations. During the work presented in Chapter 4, we learned how
regionalizations, a SBSS tuning parameter, can be useful for geostatistical modeling as
a whole. To our knowledge, while regionalizations1 were discussed in the visualization

1While some works in visualization [Wu+17; WBL18; WBL20] discuss regions and their construction,
they assume a weaker concept where regions are non-contiguous or overlapping.
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literature [Guo09], only fully automatic algorithms were proposed so far (see, e.g.,
references in [DRS07; Ayd+21]). The geochemical expert in our evaluations had extensive
knowledge about geological and chemical processes in the survey area that can inform
a regionalization, but algorithms can only incorporate what was given to them in a
computer-readable format. Further, algorithms often need parameters in advance that
are difficult to come up with, such as the number of desired regions or a threshold value
for a spatially summative variable [DAR12]. Very few report any kind of uncertainty
about the result. For these reasons we think that VA would be well-applied to that
problem, potentially impact many fields, and has the potential to answer other related
interesting questions, such as by which criteria humans organize and partition spatial
fields. These in turn may inform the design of future algorithms.

Visualization of Many Spatially Distributed Variables across Scales. In our
work, we compared latent dimensions only globally, but finer-grained comparisons would
allow more detailed assessments whether two dimensions can be considered equal. Good-
win et al. [Goo+16] suggested a framework for multivariate visual comparison, in which
they distinguish the number of variables as univariate, bivariate, and two sizes of mul-
tivariate data. In addition, they consider micro, macro and global variation between
variables. The authors suggest possible existing visualizations for each combination of the
two dimensions, but mention as the limitations of their framework [Goo+16, p. 607] that
it is “general, partially populated and contains only broad design guidelines.” Particular
designs should be proposed and tested according to specified tasks, which could be related
to interactive map tasks [Rot13]. This topic fits into persistent challenges in geovisual-
ization [Çöl+17]: The dimensionality of datasets was mentioned to be challenging as
well as developing guidelines to matching visualization types to task types. Progress
in this direction will thus benefit geovisual analytics in general. One way to approach
these problems is by collaborating with analysts in domains traditionally handling many
variables, such as geochemistry. Design studies should surface necessary tasks, which can
then be related to the mentioned existing literature. Multiple design alternatives to solve
said tasks can be investigated in controlled experiments.

Multivariate Modeling & Prediction. So far we considered BSS detached from
one of its stated practical purposes. BSS is promising in the context of multivariate
modeling and, as a next step, prediction/forecasting. The advantages are expected to be
especially noticeable in contexts with dozens of variables. Bögl et al. [Bög+13, p. 2245]
mentioned as future work to “include the performance of the model for forecasting the
diagnostic step.” They achieved this in later work [Bög+15], but still only for univariate
time series. Sun et al. [Sun+20] integrate the forecasting performance and risk associated
with different products and categories into the demand forecasting model selection
process, but they also consider only univariate models. Multivariate spatial modeling is
challenging, too. As touched upon in Section 1.1.3, to model a spatial field in terms of
the second-order dependence, spatial covariance functions are required. Many of these
functions are parametric and their parameters have to be estimated for the dataset at
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hand. Naturally, the number of parameters and their estimation complexity increases
with higher dimensionality of the data. The prediction performance is not part of this
estimation process. With latent dimensions obtained by SBSS it would be possible,
since they are marginally and spatially uncorrelated, to model them separately with
univariate approaches, predict seperately, and back-transform the result into the original
data space — a potentially much simpler process. To support it properly, initial work in
this thesis has to be further developed to be incorporated into a larger pipeline consisting
of feature selection, BSS parameter selection, dimensionality reduction, modeling, and
prediction. Many of the challenges for data processing pipeline design suggested by von
Landesberger et al. [vLFR17, p. 2238–2239] become relevant, such as “un-breaking the
user’s workflow” (holistically assess the effect of decisions across the whole pipeline),
“analyzing and visualizing the flow of uncertainty in pipelines,” “assist in parameter
choices,” or “exploit derived measures.” Results may thus advance visualization research
in that regard, besides the practical improvements for domain experts.

DR Explainability for Geovisual Analytics. Our fourth research question about
applying DR explainability approaches to temporal and spatial latent dimensions is
already included in the previous paragraph. Interactive visualizations should support the
analyst in deciding which dimensions to keep and which to remove while considering the
source of the introduced error, its temporal and spatial distribution, and its impact on,
e.g., prediction performance. Achieving these goals likely improves geostatistical modeling
and the result can easily be translated to other latent variable models. Another possibly
fruitful transfer from DR research to geoanalytics could be attribute-based explanations
[Sil+15]. The idea is to highlight which (groups of) variables in the dataset contribute
most to the local neighborhood’s variance or high-dimensional distances. The approach
seems directly applicable to multivariate spatial data. If done so, it could be an overview
visualization and thus an alternative to, e.g., small multiples or a clustering. The former
gets less efficient with many variables while the latter often introduces information loss
via clear-cut categories.

7.1 Bibliography

[Als+16] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. Rodgers.
“The State-of-the-Art of Set Visualization”. In: Computer Graphics Forum
35.1 (2016), pp. 234–260. doi: 10.1111/cgf.12722 (cit. on p. 219).

[Ayd+21] O. Aydin, Mark. V. Janikas, R. M. Assunção, and T.-H. Lee. “A Quantita-
tive Comparison of Regionalization Methods”. In: International Journal
of Geographical Information Science 35.11 (2021), pp. 2287–2315. doi:
10.1080/13658816.2021.1905819 (cit. on p. 220).

221

https://doi.org/10.1111/cgf.12722
https://doi.org/10.1080/13658816.2021.1905819


7. Future Work

[Bög+13] M. Bögl, W. Aigner, P. Filzmoser, T. Lammarsch, S. Miksch, and A.
Rind. “Visual Analytics for Model Selection in Time Series Analysis”. In:
IEEE Transactions on Visualization and Computer Graphics 19.12 (2013),
pp. 2237–2246. doi: 10.1109/tvcg.2013.222 (cit. on p. 220).

[Bög+15] M. Bögl, W. Aigner, P. Filzmoser, T. Gschwandtner, T. Lammarsch, S.
Miksch, and A. Rind. “Integrating Predictions in Time Series Model Se-
lection”. In: EuroVis Workshop on Visual Analytics (EuroVA). The Euro-
graphics Association, 2015. doi: 10.2312/eurova.20151107 (cit. on
p. 220).

[Çöl+17] A. Çöltekin, S. Bleisch, G. Andrienko, and J. Dykes. “Persistent Challenges
in Geovisualization – a Community Perspective”. In: International Journal
of Cartography 3 (sup1 2017), pp. 115–139. doi: 10.1080/23729333.
2017.1302910 (cit. on p. 220).

[DAR12] J. C. Duque, L. Anselin, and S. J. Rey. “The Max-P-Regions Problem*”.
In: Journal of Regional Science 52.3 (2012), pp. 397–419. doi: 10.1111/
j.1467-9787.2011.00743.x (cit. on p. 220).

[DRS07] J. C. Duque, R. Ramos, and J. Suriñach. “Supervised Regionalization
Methods: A Survey”. In: International Regional Science Review 30.3 (2007),
pp. 195–220. doi: 10.1177/0160017607301605 (cit. on p. 220).

[Goo+16] S. Goodwin, J. Dykes, A. Slingsby, and C. Turkay. “Visualizing Multiple
Variables Across Scale and Geography”. In: IEEE Transactions on Visual-
ization and Computer Graphics 22.1 (2016), pp. 599–608. doi: 10.1109/
tvcg.2015.2467199 (cit. on p. 220).

[Guo09] D. Guo. “Flow Mapping and Multivariate Visualization of Large Spatial
Interaction Data”. In: IEEE Transactions on Visualization and Computer
Graphics 15.6 (2009), pp. 1041–1048. doi: 10.1109/tvcg.2009.143
(cit. on p. 220).

[PBM23] N. Piccolotto, M. Bögl, and S. Miksch. “Multi-Ensemble Visual Analytics
via Fuzzy Sets”. In: EuroVis Workshop on Visual Analytics (EuroVA). The
Eurographics Association, 2023. isbn: 978-3-03868-222-6. doi: 10.2312/
eurova.20231092 (cit. on p. 219).

[Rot13] R. E. Roth. “An Empirically-Derived Taxonomy of Interaction Primitives
for Interactive Cartography and Geovisualization”. In: IEEE Transactions
on Visualization and Computer Graphics 19.12 (2013), pp. 2356–2365. doi:
10.1109/tvcg.2013.130 (cit. on p. 220).

[Sil+15] R. R. O. da Silva, P. E. Rauber, R. M. Martins, R. Minghim, and A. C. Telea.
“Attribute-Based Visual Explanation of Multidimensional Projections”. In:
EuroVis Workshop on Visual Analytics (EuroVA) (2015), 5 pages. doi:
10.2312/eurova.20151100 (cit. on p. 221).

222

https://doi.org/10.1109/tvcg.2013.222
https://doi.org/10.2312/eurova.20151107
https://doi.org/10.1080/23729333.2017.1302910
https://doi.org/10.1080/23729333.2017.1302910
https://doi.org/10.1111/j.1467-9787.2011.00743.x
https://doi.org/10.1111/j.1467-9787.2011.00743.x
https://doi.org/10.1177/0160017607301605
https://doi.org/10.1109/tvcg.2015.2467199
https://doi.org/10.1109/tvcg.2015.2467199
https://doi.org/10.1109/tvcg.2009.143
https://doi.org/10.2312/eurova.20231092
https://doi.org/10.2312/eurova.20231092
https://doi.org/10.1109/tvcg.2013.130
https://doi.org/10.2312/eurova.20151100


7.1. Bibliography

[Sun+20] D. Sun, Z. Feng, Y. Chen, Y. Wang, J. Zeng, M. Yuan, T.-C. Pong, and
H. Qu. “DFSeer: A Visual Analytics Approach to Facilitate Model Selection
for Demand Forecasting”. In: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. New York, NY, USA: ACM, 2020,
pp. 1–13. isbn: 978-1-4503-6708-0. doi: 10.1145/3313831.3376866
(cit. on p. 220).

[vLFR17] T. von Landesberger, D. W. Fellner, and R. A. Ruddle. “Visualization
System Requirements for Data Processing Pipeline Design and Optimiza-
tion”. In: IEEE Transactions on Visualization and Computer Graphics 23.8
(2017), pp. 2028–2041. doi: 10.1109/tvcg.2016.2603178 (cit. on
p. 221).

[Wan+19] J. Wang, S. Hazarika, C. Li, and H.-W. Shen. “Visualization and Vi-
sual Analysis of Ensemble Data: A Survey”. In: IEEE Transactions on
Visualization and Computer Graphics 25.9 (2019), pp. 2853–2872. doi:
10.1109/tvcg.2018.2853721 (cit. on p. 219).

[WBL18] Y. Wang, G. Baciu, and C. Li. “Visualizing Functional Regions”. In: EuroVis
2018 - Short Papers. 2018 (cit. on p. 219).

[WBL20] Y. Wang, G. Baciu, and C. Li. “Visualizing Dynamics of Urban Regions
Through a Geo-Semantic Graph-Based Method”. In: Computer Graphics
Forum 39.1 (2020), pp. 405–419. doi: 10.1111/cgf.13882 (cit. on
p. 219).

[Wu+17] W. Wu, Y. Zheng, N. Cao, H. Zeng, B. Ni, H. Qu, and L. M. Ni. “MobiSeg:
Interactive Region Segmentation Using Heterogeneous Mobility Data”. In:
IEEE Pacific Visualization Symposium. 2017, pp. 91–100. doi: 10.1109/
pacificvis.2017.8031583 (cit. on p. 219).

223

https://doi.org/10.1145/3313831.3376866
https://doi.org/10.1109/tvcg.2016.2603178
https://doi.org/10.1109/tvcg.2018.2853721
https://doi.org/10.1111/cgf.13882
https://doi.org/10.1109/pacificvis.2017.8031583
https://doi.org/10.1109/pacificvis.2017.8031583




List of Figures

1.1 Charles Joseph Minard’s illustration of Napoleon’s losses. Image: [Min70, vue 52] 4
1.2 John Snow’s cholera map. Image: [Sno54, Map 1] . . . . . . . . . . . . . . . 6
1.3 Polar area chart showing cause of death in the British army. Image: [Nig59,

p. 19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Datasaurus’ dozen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 InfoVis Pipeline after Card et al. [CMS99, Fig. 1.23] . . . . . . . . . . . . 8
1.6 A model for visualization by van Wijk. Image: [vWij05, Fig. 1] © 2005 IEEE 9
1.7 VA process after Keim et al. [Kei+10, Fig. 2.3] . . . . . . . . . . . . . . . 10
1.8 The 9-stage framework of the Design Study Methodology. Image: [SMM12,

Fig. 2] © 2012 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Munzner’s Nested Model of Visualization Design. Image: [Mun09, Fig. 1]

© 2009 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.10 The design triangle after Miksch and Aigner. [MA14] . . . . . . . . . . . . 12
1.11 Ebbinghaus Illusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.12 A data flow model of BSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.13 TBSS example application in healthcare. . . . . . . . . . . . . . . . . . . . 19
1.14 Plots of two out of 31 elements in collected moss samples. . . . . . . . . . 21
1.15 First two components identified in the Kola dataset with SBSS. . . . . . . 22
1.16 BSS in the VA model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.17 Relation of our publications to the BSS data flow model. . . . . . . . . . 26
1.18 Structure of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Data Flow Model for vPSA. Image: [Sed+14, Fig. 6] © 2014 IEEE . . . . . . 40
2.2 Themes in vPSA approaches. . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Finding Parameter Settings sub-themes. . . . . . . . . . . . . . . . . . . . 44
2.4 Forward and inverse design. Image: [Cof+13, Fig. 1] © 2013 IEEE . . . . . . 45
2.5 Input/Output Visualization sub-themes. . . . . . . . . . . . . . . . . . . . 46
2.6 Themes for Data Case Organization. . . . . . . . . . . . . . . . . . . . . . 49
2.7 Example for Derivation. Image: [EST20, Fig. 4] License: CC-BY . . . . . . . 52
2.8 A “Warming Stripes” dataset in different visualization idioms. . . . . . . . 63
2.9 ThermalPlot. Image: [Sti+16, Fig. 10] © 2016 IEEE . . . . . . . . . . . . . . 64
2.10 Examples of visualization approaches for point data. . . . . . . . . . . . . 66
2.11 Examples of set visualization techniques. . . . . . . . . . . . . . . . . . . . 70
2.12 Ensemble visualization pipeline. . . . . . . . . . . . . . . . . . . . . . . . . 71

225



2.13 Examples of visualization techniques to support analytic tasks in ensemble
visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.14 Human-in-the-loop process model for interactive DR. Image: [Sac+17, Fig. 6]
© 2017 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.15 Guidance characterization. Image: [Cen+17, Fig. 1] © 2017 IEEE . . . . . . 77

3.1 Datasets in this paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.2 The existing analysis workflow and the corresponding screens in TBSSvis. 115
3.3 Display of and interaction with time series. . . . . . . . . . . . . . . . . . 117
3.4 Ensemble screen of TBSSvis (medical data). . . . . . . . . . . . . . . . . . 120
3.5 Ensemble screen of TBSSvis (medical data) . . . . . . . . . . . . . . . . . 122
3.6 Interweaved histograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.7 The Lag Selection view (ECG data). . . . . . . . . . . . . . . . . . . . . . 124
3.8 Usage scenario on financial dataset. . . . . . . . . . . . . . . . . . . . . . 127
3.9 Usage scenario on medical dataset. . . . . . . . . . . . . . . . . . . . . . . 128

4.1 SBSS parameters illustrated on the same locations. . . . . . . . . . . . . . 145
4.2 Screenshot of our prototype (Colorado dataset). . . . . . . . . . . . . . . . 152
4.3 Illustration of kernel guidance visualization. . . . . . . . . . . . . . . . . . 155
4.4 Comparison of a map of soil types in Europe and our regionalization guidance. 162
4.5 Insights into the GEMAS dataset with SBSS. . . . . . . . . . . . . . . . . 163

5.1 Visualization pipeline for Discrepancy Dendrogram. . . . . . . . . . . . . 173
5.2 SBSS data flow model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.3 Glyphs used in the document. . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.4 XY Discrepancy Dendrogram of the function y = x2. . . . . . . . . . . . 182
5.5 Screenshot of our prototype showing 48 SBSS parameters and outputs. . . 183
5.6 Leaf visualizations for SBSS. . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.7 KW Discrepancy Dendrogram for the Veneto dataset. . . . . . . . . . . . 188
5.8 RW Discrepancy Dendrogram for the Veneto dataset. . . . . . . . . . . . 189
5.9 WR Discrepancy Dendrogram for the Colorado dataset. . . . . . . . . . 190
5.10 Rank vs. min-max distance normalization. . . . . . . . . . . . . . . . . . . 191
5.11 OSPW Discrepancy Dendrogram used for microclimate simulations. . . . 194
5.12 Subset Sensitivity View of cluster in Figure 5.11. . . . . . . . . . . . . . . 195

226



List of Tables

2.1 Contingency table of parameter space tasks. . . . . . . . . . . . . . . . . . 58

4.1 Results of the ICE-T evaluation with visualization experts. . . . . . . . . 160

5.1 Results of the ICE-T evaluation with visualization experts. . . . . . . . . 185

227





List of Algorithms

3.1 Pseudocode of constrained k-medoids. . . . . . . . . . . . . . . . . . . . 119

5.1 Pseudocode of sensitivity index computations. . . . . . . . . . . . . . . 180

229





Acronyms

AMUSE Algorithm for Multiple Unknown Signal Extraction. 17, 18, 22

BSS Blind Source Separation. ix, xi, 1–3, 15–18, 20, 21, 23–28, 39–41, 60, 61, 65, 68, 71,
72, 76, 77, 105, 143, 206–213, 219–221, 225

DR Dimensionality Reduction. ix, xi, 1–3, 13, 16, 23, 24, 27, 71, 72, 74–76, 207–209,
212, 221, 226

ECG electrocardiogram. 18, 19

EEG electroencephalogram. 20

gSOBI Generalized Second-Order Blind Identification. 2, 19, 20, 105, 205

ICA Independent Component Analysis. 17

iid independent, identically distributed. 17

MAUP modifiable areal unit problem. 67

MDS Multi-Dimensional Scaling. 1

PCA Principal Component Analysis. 1, 2, 17, 74, 76, 211

PCP Parallel Coordinates Plot. 64, 206, 215

PSA Parameter Space Analysis. 39, 42, 43, 46, 60, 105, 171, 207, 211

RTA Reflexive Thematic Analysis. 43

SBSS Spatial Blind Source Separation. ix, xi, 2, 3, 17, 20, 22, 23, 25, 28, 61, 69, 143–154,
156, 158–164, 171–175, 177, 178, 180, 181, 183, 184, 186, 187, 189, 194–196, 206–212,
219, 221, 225, 226

SOBI Second-Order Blind Identification. 18–20, 22, 206

231



SOS second-order separation. 18

t-SNE t-Distributed Stochastic Neighbor Embedding. 1, 16, 76

TBSS Temporal Blind Source Separation. ix, xi, 2, 3, 17–20, 22, 23, 25, 27, 69, 105–117,
127, 129, 132–134, 205, 206, 208, 210, 225

UMAP Uniform Manifold Approximation and Projection. 1, 16, 75

VA Visual Analytics. ix, xi, 3, 9, 10, 13, 14, 23–25, 27, 28, 65, 75–77, 105, 143, 171, 207,
208, 210–214, 219, 220, 225

vPSA Visual Parameter Space Analysis. 27, 39–43, 46, 48, 49, 55–60, 210, 225

vSOBI variant of Second-Order Blind Identification. 19, 20, 206

232



Appendix

233



Papers included in Thematic Analysis
citekey title year outlet identifier
bruckner2010 Result-Driven Exploration of 

Simulation Parameter Spaces for 
Visual Effects Design

2010 IEEE TVCG 10.1109/TVCG.2010.190

waser2010 World Lines 2010 IEEE TVCG 10.1109/TVCG.2010.223
malik2010 Comparative Visualization for 

Parameter Studies of Dataset 
Series

2010 IEEE TVCG 10.1109/TVCG.2010.20

kerr2010 Toward evaluating material design 
interface paradigms for novice 
users

2010 ACM TOG 10.1145/1778765.1778772

matkovic2010a Interactive Visual Analysis of 
Multiple Simulation Runs Using the 
Simulation Model View: 
Understanding and Tuning of an 
Electronic Unit Injector

2010 IEEE TVCG 10.1109/TVCG.2010.171

afzal2011 Visual analytics decision support 
environment for epidemic modeling 
and response evaluation

2011 VAST
10.1109/VAST.2011.6102457

matejka2018 Dream Lens: Exploration and 
Visualization of Large-Scale 
Generative Design Datasets

2018 CHI 10.1145/3173574.3173943

he2020 InSituNet: Deep Image Synthesis 
for Parameter Space Exploration 
of Ensemble Simulations

2020 IEEE TVCG 10.1109/TVCG.2019.2934312

bernard2019 Visual-Interactive Preprocessing of 
Multivariate Time Series Data

2019 EG CGF 10.1111/cgf.13698

torsney-weir2011 Tuner: Principled Parameter 
Finding for Image Segmentation 
Algorithms Using Visual Response 
Surface Exploration

2011 IEEE TVCG 10.1109/TVCG.2011.248

umetani2011 Sensitive Couture for Interactive 
Garment Modeling and Editing

2011 ACM TOG 10.1145/2010324.1964985

pretorius2011 Visualization of Parameter Space 
for Image Analysis

2011 IEEE TVCG 10.1109/TVCG.2011.253

pretorius2015 Visual parameter optimisation for 
biomedical image processing

2015 BMC Bioinformatics10.1186/1471-2105-16-S11-S9

bao2013 Generating and exploring good 
building layouts

2013 ACM TOG 10.1145/2461912.2461977

millward2013 An operational software tool for the 
analysis of coronagraph images: 
Determining CME parameters for 
input into the WSA-Enlil 
heliospheric model

2013 Wiley Space Weather10.1002/swe.20024

coffey2013 Design by Dragging: An Interface 
for Creative Forward and Inverse 
Design with Simulation Ensembles

2013 IEEE TVCG 10.1109/TVCG.2013.147

chaudhuri2013 Attribit: content creation with 
semantic attributes

2013 UIST 10.1145/2501988.2502008

bogl2013 Visual Analytics for Model 
Selection in Time Series Analysis

2013 IEEE TVCG 10.1109/TVCG.2013.222

ribicic2013 Visual Analysis and Steering of 
Flooding Simulations

2013 IEEE TVCG 10.1109/TVCG.2012.175

holbein2018 Parameter Space Comparison of 
Inertial Particle Models

2018 VMV 10.2312/vmv.20181254

Supplemental Material to Section 2.1.1

234



khan2019 GenYacht: An interactive 
generative design system for 
computer-aided yacht hull design

2019 Elsevier Ocean Engineering10.1016/j.oceaneng.2019.106462

desai2019 Geppetto: Enabling Semantic 
Design of Expressive Robot 
Behaviors

2019 CHI 10.1145/3290605.3300599

orban2019 Drag and Track: A Direct 
Manipulation Interface for 
Contextualizing Data Instances 
within a Continuous Parameter 
Space

2019 IEEE TVCG 10.1109/TVCG.2018.2865051

swearngin2020 Scout: Rapid Exploration of 
Interface Layout Alternatives 
through High-Level Design 
Constraints

2020 CHI 10.1145/3313831.3376593

umetani2012 Guided Exploration of Physically 
Valid Shapes for Furniture Design

2012 ACM TOG 10.1145/2185520.2185582

koyama2014 Crowd-powered parameter 
analysis for visual design 
exploration

2014 UIST 10.1145/2642918.2647386

luboschik2014 Supporting the integrated visual 
analysis of input parameters and 
simulation trajectories

2014 Elsevier Computers & Graphics10.1016/j.cag.2013.09.004

beham2014 Cupid: Cluster-Based Exploration 
of Geometry Generators with 
Parallel Coordinates and Radial 
Trees

2014 IEEE TVCG 10.1109/TVCG.2014.2346626

sorger2016 LiteVis: Integrated Visualization for 
Simulation-Based Decision 
Support in Lighting Design

2016 IEEE TVCG 10.1109/TVCG.2015.2468011

poco2014
Visual Reconciliation of Alternative 
Similarity Spaces in Climate 
Modeling

2014 IEEE TVCG 10.1109/TVCG.2014.2346755

doraiswamy2015 Topology-based catalogue 
exploration framework for 
identifying view-enhanced tower 
designs

2015 ACM TOG 10.1145/2816795.2818134

ruppert2014 Visual access to an agent-based 
simulation model to support 
political decision making

2014 i-KNOW 10.1145/2637748.2638410

matkovic2014 Visual Analytics for Complex 
Engineering Systems: Hybrid 
Visual Steering of Simulation 
Ensembles

2014 IEEE TVCG 10.1109/TVCG.2014.2346744

weissenbock2016PorosityAnalyzer: Visual analysis 
and evaluation of segmentation 
pipelines to determine the porosity 
in fiber-reinforced polymers

2016 VAST 10.1109/VAST.2016.7883516

yumer2015 Semantic shape editing using 
deformation handles

2015 ACM TOG 10.1145/2766908

frohler2016 GEMSe: Visualization-Guided 
Exploration of Multi-channel 
Segmentation Algorithms

2016 EG CGF 10.1111/cgf.12895

obermaier2016 Visual Trends Analysis in Time-
Varying Ensembles

2016 IEEE TVCG 10.1109/TVCG.2015.2507592

luboschik2015 Feature-Driven Visual Analytics of 
Chaotic Parameter-Dependent 
Movement

2015 EG CGF 10.1111/cgf.12654

235



berseth2021 Interactive Architectural Design 
with Diverse Solution Exploration

2021 IEEE TVCG 10.1109/TVCG.2019.2938961

walch2020 LightGuider: Guiding Interactive 
Lighting Design using 
Suggestions, Provenance, and 
Quality Visualization

2020 IEEE TVCG 10.1109/TVCG.2019.2934658

liu2018b Understanding the Relationship 
Between Interactive Optimisation 
and Visual Analytics in the Context 
of Prostate Brachytherapy

2018 IEEE TVCG 10.1109/TVCG.2017.2744418

hazarika2020 NNVA: Neural Network Assisted 
Visual Analysis of Yeast Cell 
Polarization Simulation

2020 IEEE TVCG 10.1109/TVCG.2019.2934591

liu2021b Supporting the Problem-Solving 
Loop: Designing Highly Interactive 
Optimisation Systems

2021 IEEE TVCG 10.1109/TVCG.2020.3030364

bernard2018 Combining the automated 
segmentation and visual analysis 
of multivariate time series

2018 EuroVA 10.2312/eurova.20181112

schulz2017 Interactive design space 
exploration and optimization for 
CAD models

2017 ACM TOG 10.1145/3072959.3073688

umetani2014 Pteromys: interactive design and 
optimization of free-formed free-
flight model airplanes

2014 ACM TOG 10.1145/2601097.2601129

cibulski2017 Super-Ensembler: interactive 
visual analysis of data surface sets

2017 SCCG 10.1145/3154353.3154362

eichner2020 Making Parameter Dependencies 
of Time-Series Segmentation 
Visually Understandable

2020 EG CGF 10.1111/cgf.13894

biswas2017 Visualization of Time-Varying 
Weather Ensembles across 
Multiple Resolutions

2017 IEEE TVCG 10.1109/TVCG.2016.2598869

steiner2017 Integrated Structural–Architectural 
Design for Interactive Planning

2017 EG CGF 10.1111/cgf.12996

gunther2016a Inertial Steady 2D Vector Field 
Topology

2016 EG CGF 10.1111/cgf.12846

matkovic2017 Quantitative Externalization of 
Visual Data Analysis Results Using 
Local Regression Models

2017 CD-MAKE 10.1007/978-3-319-66808-6_14

schwarzl2019 Cellpackexplorer: Interactive 
model building for volumetric data 
of complex cells

2019 Elsevier Computers & Graphics10.1016/j.cagx.2019.100010

zaman2015 GEM-NI: A System for Creating 
and Managing Alternatives In 
Generative Design

2015 CHI 10.1145/2702123.2702398

ribes2019 A Visual Sensitivity Analysis for 
Parameter-Augmented Ensembles 
of Curves

2019 ASME Journal of Verification, Validation and Uncertainty Quantification10.1115/1.4046020

unger2012 A Visual Analysis Concept for the 
Validation of Geoscientific 
Simulation Models

2012 IEEE TVCG 10.1109/TVCG.2012.190

konev2014 Run Watchers: Automatic 
Simulation-Based Decision 
Support in Flood Management

2014 IEEE TVCG 10.1109/TVCG.2014.2346930

236



pa
pe
r

da
ta
-a

da
ta
-t

da
ta
-s

da
ta
-s
t

da
ta
-ta

da
ta
-s
a

da
ta
-s
ta

pa
ra
m
-a

pa
ra
m
-t

pa
ra
m
-s

pa
ra
m
-s
t
pa
ra
m
-ta

pa
ra
m
-s
a

pa
ra
m
-s
ta

ou
tp
ut
-a

ou
tp
ut
-t

ou
tp
ut
-s

ou
tp
ut
-s
t
ou

tp
ut
-ta

ou
tp
ut
-s
a

ou
tp
ut
-s
ta

10
1

3
2

31
4

11
15

5
63

5
27

6
2

6
5

10
0

19
20

21
26

10
so
rg
er
20
16

x
x

x
gu
nt
he
r2
01
6a

x
x

x
x

x
x

liu
20
21
b

x
x

x
am

irk
ha
no
v2
01
0

x
x

x
bo
gl
20
13

x
x

x
x

w
as
er
20
10

x
x

x
x

br
uc
kn
er
20
10

x
x

be
rn
ar
d2
01
6

x
x

x
sc
hu
lz
20
17

x
x

x
w
an
g2
01
7

x
x

x
x

da
ya
m
a2
02
0

x
x

x
da
ng
20
15

x
x

x
pr
ev
os
t2
01
3

x
x

be
ha
m
20
14

x
x

ba
o2
01
3

x
x

ab
uz
ur
ai
q2
02
0

x
x

af
za
l2
01
1

x
x

x
x

be
rn
ar
d2
01
2a

x
x

x
be
rn
ar
d2
01
8

x
x

x
be
rn
ar
d2
01
9

x
x

x
be
rs
et
h2
02
1

x
x

x
bi
sw

as
20
17

x
x

x
x

bo
ck
20
15

x
x

x
bo
gl
20
14

x
x

x
x

bo
rs
20
17

x
x

x
br
un
ha
rt-
lu
po
20
16

x
x

br
ya
n2
01
5

x
x

x
x

ch
au
dh
ur
i2
01
3

x
x

x
ci
bu
ls
ki
20
17

x
x

co
ffe
y2
01
3

x
x

x
de
sa
i2
01
9

x
x

x
do
ra
is
w
am

y2
01
5

x
x

x
ei
ch
ne
r2
02
0

x
x

x
fro
hl
er
20
16

x
x

x
ga
vr
ile
sc
u2
01
0

x
x

x
ge
ili
ng
er
20
18

x
x

x
ha
o2
01
1

x
x

x
ha
za
rik
a2
02
0

x
x

he
20
20

x
x

ho
lb
ei
n2
01
8

x
x

x
x

x
x

jo
hn
so
n2
01
9

x
x

x
x

ka
zi
20
17

x
x

x
ke
rr
20
10

x
x

x
kh
an
20
19

x
x

ko
ne
v2
01
4

x
x

x
x

ko
ya
m
a2
01
4

x
x

x

Data Characteristics of Surveyed Papers

237



pa
pe
r

da
ta
-a

da
ta
-t

da
ta
-s

da
ta
-s
t

da
ta
-ta

da
ta
-s
a

da
ta
-s
ta

pa
ra
m
-a

pa
ra
m
-t

pa
ra
m
-s

pa
ra
m
-s
t
pa
ra
m
-ta

pa
ra
m
-s
a

pa
ra
m
-s
ta

ou
tp
ut
-a

ou
tp
ut
-t

ou
tp
ut
-s

ou
tp
ut
-s
t
ou

tp
ut
-ta

ou
tp
ut
-s
a

ou
tp
ut
-s
ta

ko
ya
m
a2
02
0

x
x

x
lin
20
13

x
x

x
liu
20
18
b

x
x

x
lu
bo
sc
hi
k2
01
5

x
x

lu
bo
sc
hi
k2
01
2a

x
x

lu
bo
sc
hi
k2
01
4

x
x

m
al
ik
20
10

x
x

x
m
ar
sa
ul
t2
01
3

x
x

m
at
ej
ka
20
18

x
x

m
at
ko
vi
c2
01
0

x
x

m
at
ko
vi
c2
01
0a

x
x

x
x

m
at
ko
vi
c2
01
4

x
x

x
m
at
ko
vi
c2
01
7

x
x

m
at
ko
vi
c2
01
3

x
x

m
er
re
ll2
01
1

x
x

x
m
ill
w
ar
d2
01
3

x
x

m
oh
iu
dd
in
20
20

x
x

od
on
ov
an
20
15

x
x

ob
er
m
ai
er
20
16

x
x

or
ba
n2
01
9

x
x

po
co
20
14

x
x

pr
et
or
iu
s2
01
1

x
x

x
pr
et
or
iu
s2
01
5

x
x

x
ra
id
ou
20
16

x
x

x
ra
id
ou
20
14

x
x

x
ra
ith
20
21

x
x

x
rib
es
20
19

x
x

rib
ic
ic
20
13

x
x

x
rib
ic
ic
20
12

x
x

x
ro
hl
ig
20
15

x
x

x
ro
jo
20
18

x
x

x
x

x
ru
pp
er
t2
01
4

x
x

sa
gr
is
ta
20
17

x
x

x
x

sa
gr
is
ta
20
20

x
x

x
x

sc
hr
ec
k2
01
2

x
x

x
sc
hu
ltz
20
13

x
x

x
sc
hu
lz
20
18

x
x

sc
hw

ar
zl
20
19

x
x

st
ee
d2
01
3

x
x

st
ei
ne
r2
01
7

x
x

x
sw

ea
rn
gi
n2
02
0

x
x

x
to
rs
ne
y-
w
ei
r2
01
1

x
x

x
um

et
an
i2
01
2

x
x

um
et
an
i2
01
1

x
x

x
um

et
an
i2
01
4

x
x

un
ge
r2
01
2

x
x

x
vo
nl
an
de
sb
er
ge
r2
01
3a

x
x

x

238



pa
pe
r

da
ta
-a

da
ta
-t

da
ta
-s

da
ta
-s
t

da
ta
-ta

da
ta
-s
a

da
ta
-s
ta

pa
ra
m
-a

pa
ra
m
-t

pa
ra
m
-s

pa
ra
m
-s
t
pa
ra
m
-ta

pa
ra
m
-s
a

pa
ra
m
-s
ta

ou
tp
ut
-a

ou
tp
ut
-t

ou
tp
ut
-s

ou
tp
ut
-s
t
ou

tp
ut
-ta

ou
tp
ut
-s
a

ou
tp
ut
-s
ta

w
al
ch
20
20

x
x

x
w
as
er
20
14

x
x

x
x

x
w
ei
ss
en
bo
ck
20
16

x
x

x
w
oo
db
ur
y2
01
7

x
x

w
u2
01
1

x
x

ya
ne
z2
01
7

x
x

x
yu
m
er
20
15

x
x

x
za
m
an
20
15

x
x

239



Online Material

All supplemental material to P5 may also be found on the open access web page of the
article: https://doi.org/10.1111/cgf.14785 (accessed 15th May, 2024). Supplemental
material not reproduced in this thesis:

• Archive: https://onlinelibrary.wiley.com/action/downloadSupplement?
doi=10.1111%2Fcgf.14785&file=cgf14785-sup-0001-data.zip (accessed 15th May,
2024). Contains list of excluded papers, final codebook, and a bibtex file of all
papers in the survey.
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# TBSS Interviews 1

This document is a transcript of the video interviews and first round of user studies, grouped by
interview phase and visual component (which is related to one or more tasks). Note that, even
though these are extensive transcripts, our goal here was not to capture everything, but only
parts relevant to our research questions. While we tried our best not to, we might have missed
or misinterpreted relevant situations. This is inherent to a qualitative research approach.

* researchers are referred to by 1-letter initials (N, M)
* participants are referred to by 2-letter codes (E1, E2, E3, E4, E5)
* [XY](hh:mm:ss) is a point in the video of participant XY, eg. [E1](01:12:00) refers to the video
of E1's study, at around 1 hour 12 minutes
* quotes "" show verbatim quotes from participant, ellipsis … is used when something else was
said in between
* researcher interpretations or remarks/notes are in square brackets [...]
* text without quotes or brackets is a summary by a researcher

## Direct feedback from participants and our observations

* E3 was well prepared from the document we sent out earlier
* E4 also looked at it before and knew some stuff

### Time Series Component

* [E2](00:15:50) zoomed into a few weeks worth accidentally "whoa", but after all interactions
were explained "wow, that's handy"
* [E2](01:31:00) effortless use of time series in first screen
* [E3](01:34:00) uses time zoom to look into 08 financial crisis "see which currencies were most
affected" [finds TRY/PHP]
* [E4](00:17:50) "very fancy"
* [E4](01:27:12) "so this is the '09 crisis ... i'm expecting to find sources which emphasize this
period ... or control this region"
* [E5](00:19:50) "can you go like one resolution back [in the Y zoom]?" [no but mostly a
limitation of broad browser/OS support together with web tech]
* [E5](01:53:40) went back to see original components, zoomed 1 Y step into every component
[would be good to have some of the global view controls available here already]. E5 looked for
CHF to "get an idea of the magnitude of the interesting stuff ... because i know somewhen in the
2010s they released the boundary on their currency", notes that b/c series are not on same
scale they can't directly compare them [scaling is something we expected to be done prior to
loading data, and from conversations with collaborators it didn't seem to be a problem]
* [E5](02:01:20) "not sure if you can get anything relevant from [the Y scale of components] ...
b/c often the shapes are the interesting thing, not the signs, maybe not the order, order is
important when you do DR

Supplemental Material to Chapter 3

Interview Transcripts

First Interview
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### 2D Result Projections / EXPLORE results

* [E1](00:26:00) needed 3 explanations of those, but possibly just didn't get the connection
between visual encodings and the task until N pointed it out explicitly. after N explained
everything, E1 was frowning [seemed still confused]
* [E1](01:20:20) "what is significance of these crosses [points to k1/k2 projection] like where
they are located ..." [forgot / didn't get that location is irrelevant in these, but explanation seemed
to help]
* [E1](01:21:30) used projection to select 2 similar results, also used them to determine weight
parameter
* E1 generally in the following used projections quite extensively to reason about different
results on a higher level
* [E1](01:32:00) used selectboxes interestingness->shape
* [E2](00:22:00) didn't get that 1 point is for 1 result at first, seemed to understand the
explanation that followed, esp. the near=similar aspect, at [E2](00:26:30) however they didn't
seem to get the size encoding
* [E2](00:24:50) surprised "interesting" after N explained how component projection works,
confirms that they don't usually look at their data like this
* [E2](00:28:30) during tasks: scrolls and hovers quickly in many places, "not sure if i
understood it correctly", guesses a correct pair but frowns [not satisfied], awkward moments
where neither researchers nor participant are sure if they should ask something, M chimes in
[suspecting that source of participant's dissatisfaction was related to component projection,
even though E2 referenced k1 projection] starting an explanation by telling E2 "it" [what?] is
because component projection shows shape similarity instead of interestingness, but after E2
changed it realizes that it wasn't, N explains again near=similar, then everyone moves on
* [E2](01:33:00) asks if there are results already [forgot about precomputation] and what the
opacity means in the projections
* [E2](01:41:00) checks the projections [not sure what they looks for]
* [E2](01:53:00) confirms that a new and an old, which the new one was based on, result are
similar in k1 space by looking at that projection. or E2 accidentally looked at k1 space and
intended to see component space. E2 mentions the two are similar which is expected because
only a few lags were added.
* [E3](00:25:00) understood everything it seems, and solved the tasks
* [E3](01:50:00) used projections to judge if a new parametrization is the one they just entered
by comparing it to the blue one which didn't have a similar result in k1 space before
* [E4](00:26:20) compared a pair of results *between* projections, also seemed to understand
the projections quite well from the start. "i overlooked [results with X symbol]"
* [E4](01:19:45) asks if distances can be compared between the projections [generally no, since
MDS projects every space separately. neither can be the size of points, probably.]
* [E4](01:27:40) wanted to select more/all simultaneously as they checked out all precomputed
results [he didn't unselect any after the parameters, so an overview would not have helped
much?]
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* [E4](01:29:00) used selectbox to only compare component 1 of all results [short confusion b/c
projection compared skewness but components looked differently]
* [E4](01:35:00) "how many-dimensional is this [shape / component 1] plot in reality?" [N didn't
know in the situation, it's (amount of successful results) many], E4 then concluded that there is
not so much difference between green and blue [while comparing still only 1st component, but
later they said there was no reason b/c they were not actually similar] and dropped one for
easier comparison
* [E5](00:25:50) asks detailed questions about how projections were obtained. what vectors go
in, what algorithm is used to project etc. "so [k1/k2 projections] are not related to any blind
source separation? [not sure if N understood question, but answer was no since it's computed
without unmixing matrices or components]", E5 later has no questions around projections [and
understand it], just asks about k1/k2 difference
* [E5](00:29:30) tasks: finds 2 near points "based on what you said earlier", comparable 1st
component E5 solved after hint to selectboxes
* [E5](00:32:00) "what's the X and Y in this component plot? [lengthy explanation by N, N: does
that help?] yeah, so you use MDS at some point ... [inaudible]"
* [E5](01:41:00) selects all results to see which parameters were precomputed. makes new
parametrization with only linear part "something i'm more familiar with", applies empty PCP filter,
removes all default lags, interacts a lot with 'daily' view which in the prototype is slowish. initially
prefers EV diff over autocorrelation but notes that larger lages have higher diff "which is maybe
not good ... so much of the data gets discarded with these ... maybe i'll use autocorrelation
instead"

### Inter-result Clustering / EXPLORE components

* [E1](00:34:50) found stable/unstable components immediately
* E1 referred to a cluster as 'component' and described it as 'unstable' if the contained
components didn't look similar [in their semantics some group of components is also a
component]
* [E1](01:21:34) set k to outside of bar charts
* [E1](01:30:00) inspected first components of selected results (were clustered together), found
a "disagreeing" component and selected that result too
* [E1](01:37:30) used k to investigate clustering more
* [E2](00:31:00) frowns during explanation [not understanding it?], but seemed to have a little
a-ha moment when N explained how to choose K and how a small K is useful, and also when
they saw the contained components "ah nice"
* [E2](00:36:50) had no trouble interpreting stable/unstable vis, just asked about meaning of
color
* [E2](00:38:40) asked why no blue color [from not converging run] is visible in this view, but it
made sense to E2 after N reminded that not converging means no components
* [E2](00:39:40) "what is your criteria for convergence, how do you check?" [not sure if E2 was
satisfied with answer]
* [E3](00:33:00) asked about ordering of time series in a cluster and how to compare between
clusters
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* [E3](00:36:50) during tasks: found stable component quickly, for unstable E3 increased k a bit
and found a single-element cluster
* [E4](00:32:20) would appreciate to see which of the components in a cluster is the most
central one [possibly use bold font?]
* [E4](00:33:20) also, with similar semantics as E1, referred to a cluster as a single 'component'
* [E4](01:20:20) provides interpretation of the diagonal "if most bars are on the diagonal, then
most components agree" [true for lowest k]. shortly after E4 asks for other DOI functions,
"something based on time ... just thinking out loud ... maybe something autocorrelation-based ...
but then you need to choose the lag" [reason was that E4 saw an "interesting" component
(which? the custom sine?) but neither of the DOI functions sorted it on the extreme end, so to
find it one would have to look in the middle]
* [E4](01:31:00) used the view to decide on a DOI function and get overview of components [as
intended]
* [E5](00:37:00) wants to confirm that clusters don't contain components from same
parametrization, wants to know "what we apply the k-means clustering to", wants to know if "do
you need to do anything to fix the sign ... what's going on before the clustering" [first one ever to
ask about this, seemed ok with answer], wants to confirm that all components were produced by
the same method, then "nice... perfect ... i think i understand now", a bit later E5 notes that the
DOI function changes the clustering view [N should have explained again why and how, but
didn't], E5 solves both tasks quickly, E5 also seemed to apply semantics as E1 and E4 as they
apparently looked for a cluster that all very different components [unstable group] instead of a
cluster with all but one black bar [mostly stable group but 1 outlier]

### Parameter Comparison / COMPARE parameters

* E1 [seemed confused about / not fully understand the granularity setting]
* [E1](01:30:30) immediately saw that green result used much higher lags than the others,
inferred that this is what made the result so different
* [E2](00:42:00) [not sure if E2 agrees with the task of "find large holes in lag set"]
* [E2](00:43:00) [seems to agree that coarser analysis of lags is useful, and getting the
granularity part]
* [E2](01:34:20) wonders why a k1 lag set is missing [weight was set to 0, maybe a message
would be good]
* [E2](02:03:30) wasn't sure if lag granularity is only a view parameter or if it changes/computes
results, and why it changes the projections
* [E3](00:43:40) "but you cannot anymore see how many are in each interval ... maybe it would
be a good thing [to see] ... puts more weight [if more lags are used around a certain position]"
[we could height-encode the bars then]
* [E3](01:36:30) compares parameters of 3 initially selected results, finds 1 has no linear part, 1
does not use short lags. a few minutes later checks the view again to compare only k2 lags,
then goes "ah that explains [not sure what] [because k2 param often dominates?]"
* [E4](00:37:30) figured out alone how/why lag granularity setting changes projections
* [E4](01:31:40) increased lag granularity to 3 [presumably to see if any bars align then, but they
didn't]
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* [E5](00:45:20) had no questions but relation between lag granularity, projection and lagset vis
was a bit unclear ("why does the projection change?")
* [E5](01:47:30) mentions that E5 usually would try [a default set of 1..12] and not the one E5
just chose, so it'd be interesting to compare the two and it's good that it was already computed

### Model Checking / COMPARE model assumptions

* [E1](00:43:00) found visual differences between the charts, but did not know how to interpret
* [E2](00:46:00) no reaction after explanation of eigenvalue diff chart [did E2 know how what it
shows], E2 didn't get that charts below plot values per lag, seemed to understand the intended
purpose of the charts but not sure if E2 agrees that's useful
* [E2](01:35:00) "so here it [what?] goes down, so maybe it's not using the optimal set, do i
understand it correctly?" [N thinks what happened is that because the diagonality was not
perfect, ie. 0 at all lags, E2 meant that theoretically there might exist a result with more diagonal
scatters. N's subsequent questions confused/intimidated E2 in some way because E2 became
defensive and moved on.] in the end E2 mentions that "difference is very small so not sure if it's
relevant [regardless of what it means]"
* [E3](00:49:00) knew [by heart or by script, not sure] how to interpret diagonality charts
* [E3](01:28:50) noticed difference in diagonality for new parametrization "what happened ...
why did it get worse" [N: maybe b/c of a few larger lags?] "yeah ... maybe they were not helping"
* [E3](01:37:50) finds no difference in scatter diagonality between 3 initially selected results
* [E4](00:40:10) "not sure about the interpretation ... so this tells how well the method works ...
[continues thinking hard, was a bit confused why line charts are different, later remembers that
all parametrizations find a different unmixing matrix] ... jaja my mistake i get this now [N points
out 2 connected analysis tasks] should i look at the line overall or only at the points with the
triangle ... so i guess [this parametrization] tries to make all these [scatters] diagonal, but it has
no guarantees outside ...[ends dicussion] but ok, it's interesting, it shows somehow the full
picture, but this is something i have never seen before", E4 asks for superimposition of the
curves for better comparison
* [E4](01:32:00) "all curves look pretty similar ... some roughness at the end, not sure what that
is ... seems more unstable for higher lags, which makes sense when you have less data"
[synthetic dataset did not exhibit this though]
* [E5](00:47:40) asks what `W` is, states 2x that they understands but didn't explain what they
sees, there's questions around the meaning of X ("is it time or is it lag" [i assume stats people
rarely have a calendar on the X axis that's why it's not obvious]), and around the X resolution
("is this one or three triangles" ... "can i zoom"), "i don't really understand what's happening here
or is it just that [the triangles in front] don't affect the values [in the back]? ... [N clarifies a bit] it
seems that the [tang et al triangles] were chosen quite well here ... if the goal is diagonal
scatters ... because it's quite low [in the front] ... could you use this graph to choose new lag
sets? does this reveal any information regarding that? ... [some confusion around what `W` is] ...
i think it's quite clear now ... i think they are very nice ... very interesting pictures ... to see what
other lags a W also diagonalizes ... very useful"

### Matrix Comparison / COMPARE unmixing matrices
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* [E1](00:46:00) solved all tasks immediately, did not seem to have troubles
* [E1](01:31:00) used MD index, then noticed DKK column "there is something about that series
that is interesting"
* E2 seemed to understand the encodings, but again to not really the purpose behind
* [E2](01:37:20) used this view to verify if results are identical, after looking at components
* [E3](00:50:00) had short confusion what the selectboxes above component projection pertain
to
* [E3](00:52:00) mentions that judging MD index value between the extrema depends on
dimensionality of the data, ie. 0.5 is a different flavor of similar for 3x3 than for 20x20 matrices.
then E3 visually compared components between matrices, unsure if that's allowed: you'd be
comparing value distributions in a normalized 0..1 space. if a row had values (1, 10, 100) it'd
look the same when multiplied by any constant, but you wouldn't necessarily consider the
components similar/same?
* [E3](01:39:30) uses both views to judge similarity between results [N points to DKK] [E3
thinks] "it's main contributor for many components for some reason" [N: odd?] [E3 wants to see
DKK input series, N points out a way to do it] "probably because of the scale ... makes me
wonder if it's the most informative thing to look at ... b/c mostly depending on the scale of the
currency ... maybe [the data] should be rescaled prior to this analysis"
* [E3](02:01:00) suggests something that gives better intuition about high-dimensional MD index
[possibly just showing the MD index of two random matrices next to the heatmap?], but also
says "ofc you can look at the components themselves"
* [E4](00:46:50) notices that X11 column has a lot of black squares in all matrices, wants to see
X11 to investigate why
* [E4](00:47:50) mentions like E3 that judging MD index is difficult because "there is no clear
interpretation of what the number means when it's not near the extremes, is 0.5 ... what does it
mean? ... if there was a scale/legend then i'd like to have it here"
* [E4](01:32:20) "ok now here's the clear thing" [after clicking through the previous tabs, maybe
that one should be earlier], E4 notices purple and orange are very similar, goes back to
parameters, notices wildly different k1 and concludes that "they did not play a role and
information is in the quadratic part ... so i would look at them in more detail [why?]", E4 notices
DKK column "for some reason very influential ... also [HKD]", in the end E4 drops one of the two
b/c they're the same based on MD index
* [E4](01:51:20) "let's see how [the new result] changed compared [to the old] ... hard to say
from looking [at the unmixing matrices]"
* [E5](00:55:00) "we did something similar [to the unmixing matrix heatmap] in a paper", the
paper in question doesn't appear to have such a figure though. tasks: E5 mentions that MD
index seems too high compared to the visual similarity assessment [of the first 3 rows and first 3
columns] "but maybe not if you look closer ... [based on MD index] unmixing matrices are kind of
different"
* [E5](01:38:30) asks if there's a way to export the graphics [like 'save as']
* [E5](01:48:50) mentions again that MD index is "surprisingly large ... maybe as large as they
can even be ... but i'm not sure" [is it the same dimensionality thing others mentioned?]
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* [E5](01:57:00) notes the dominant DKK series and doesn't like that it effectively hides the
other factors [N asks if whitened input data would be an effective solution, but no answer was
given]
* [E5](02:09:40) asks for a bivariate color scheme instead of grayscale but realizes that's for
another purpose (correlation matrix) and concludes the current version works fine

### Component Comparison / COMPARE components

* [E1](00:49:20) tried to hover over a line to see actual correlation value
* [E1](00:51:00) completed 'most different component' task immediately [knew how clustering
supports them there]
* [E1](00:52:40) after a hint to superimpose, E1 found time ranges where components are
different
* E1: correlation slope tasks were not a problem
* [E1](01:34:10) used correlation slope to verify assumption that components are all the same
* [E1](01:37:50) exploring clustering and correlation slope
* [E2](00:55:00) [when superimposing] "how do you match these"
* [E2](00:56:00) correlation slope made sense immediately, "nice"
* [E2](00:57:00) tasks: [clustering] mistook/guessed the lowest bar would be the most different
component initially [which in retrospect is in a way correct, all other components had much
bigger bars], but then they used the clustering as intended [superimpose] completed it after
rephrasing question [correlation] completed it on first try
* [E2](01:36:40) "these look very similar", then used superimpose and slope to verify this,
"almost identical ... that's quite surprising ... when you look at the lag sets how do you get such
similar results ... i am surprised"
* [E2](01:39:50) used superimpose with 3 results, which works but is not terribly useful when all
3 results are different. E2 did not announce an insight either. correlation slope, used after,
showed better results.
* [E2](01:53:30) judged [too?] quickly two sets of components as "similar" in the side-by-side
view, used "superimpose" which showed quite some differences and repeats "very similar, not
surprising", N asks about it and E2 points to k1 projection "they're similar here" and then to
component projection "but there are some differences here" [not sure if they got the mental
connection between component projection and thick correlation slope lines] then E2 goes back
to superimposed view "there are not much differences here" [is it a color scheme issue, as blue
and purple were used? but the bars are there to unambiguously tell that stuff is not identical]
* [E3](01:01:00) tried to get a tooltip with actual value of pearson correlatoin in slope graph
* [E3](01:04:00) about the clustering: "not sure what would be the practical use ... maybe it
could sometimes help ... haven't thought about this" [it is true that b/c components are
standardized to 0 mean and unit (1) variance, any differences tend to equal themselves out
when considering the whole time series. possible countermeasures: project back to original
space and cluster there, or cluster based on interestingness, or cluster only on a part of the time
series]
* [E3](01:44:40) "first component in each is such that there's something happening in 01/2001 ...
otherwise pretty constant ... other components have this 2008 [volatility]" [N points out controls,
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E3 uses clustering] "it's not so easy to see why these clusters are different ... [there are] similar
looking components in different clusters", E3 suggests clustering based on different metrics
such as interestingness might be useful too but "not sure what i would use", E3 superimposes 3
results and wants to see only 2
* [E3](01:51:00) uses correlation slope to see how components changed with same lags but no
quadratic part
* [E4](00:53:00) "[sees slope graph] very nice"
* [E4](00:55:00) tasks: [clustering] figures out intended use [correlation] no problem
[superimpose] no problem, even uses X and Y zoom, which others so far didn't [too hesitant to
try?]
* [E4](01:23:00) wonders how to best get correlation slope between red and green, N suggests
to unselect blue [a more direct way to accomplish this would be to switch the color/result
ordering with drag&drop in the toolbar]
* [E4](01:37:10) superimposes 3 sets but nothing specific emerges, then separates and clusters
[k=4] "if i knew something about the data i would try to interpret the clusters" [nothing specific
emerges here], then checks correlation "no thick bars". E4 sums up thought process that
working theory is information is in k2, so they would compare 1st components of [another
k2-"heavy" (more lags used in k2 than k1)] and the current truth-pick, compare the spikes, see
what happened and try to interpret [M suggests some annotation in time that shows up in all
time series, combined with going back / viewing input series again.] "i think that would be useful
here ... [but not only 1, also the others to compare]"
* [E4](01:53:00) used correlation slope to compare new and old result
* [E5](01:05:20) also tried the tooltip thing on the lines
* [E5](01:10:00) tasks: in clustering E5 didn't understand that task is to look for most different in
a single set, later it was cleared up and they now "sees how the clustering would be a good
idea". other tasks were solved pretty well.
* [E5](01:50:40) is first person to Y zoom into all first components and compare side by side
[after trying superimposition which maybe didn't highlight differences well enough?]. a bit later
E5 had problems reading the DOI value from the last component. E5 mentions then that having
the ability to sort on absolute value would be nice as last series with skewness had biggest
absolute value
* [E5](01:53:00) notes spike in first components is on same date, asks what happened

### Parameter Input Component / EXPLORE parameter space

* [E1](00:56:35) after N explained that bar chart shows usage of weight and it helps to find
parameters one didn't try yet: "that's good"
* [E1](00:56:45) after lag selection components were visible: "whoa" [overwhelmed]
* [E1](01:00:00) did not know how to interact with PCP [used it for first time] and it wasn't
introduced before. then "now i understand"
* [E1](01:01:50) multivariate acf analogy made sense to him, scatterplot i'm not sure
* [E1](01:05:50) struggles with PCP interactoin
* [E1](01:07:10) tried to click label to select [maybe that would have been more expected and
simple?]
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* [E1](01:08:10) N asked to select 3 more lags, E1 used the first 3 available [because
convenient or because something else?]
* [E1](01:38:30) tries new param. with lag that was not used before. "not sure where to start"
with lag selection. N gives suggestion. E1 has trouble interacting with PCP again b/c E1 forget
that multiple brushes are possible. unselected an accidentally selected lag without problems.
tried right click to reset brush [probs because that works for time series where brushing is
supported too]. after that E1 seemed confident using PCP and other views.
* [E1](01:42:30) looked at scatterplot and filtered for autocorrelation before [not sure if E1
expected the selected time series to update based on the one with most autocorrelation, b/c
there seemed to be a disconnect in their mind between much autocorrelation and the pattern of
the scatterplot]
* [E1](01:44:40) wanted to see acf for 1y lag, but had trouble finding it just from looking at acf
plot with multiple lags, then filtered years axis [maybe good if one could switch between lag and
calendar labeling in acf?]
* [E1](01:46:00) had questions around the calendar fit metric
* E1 seemed to enjoy all the exploration though, was really deep in it
* E1 didn't use the eigenvalue metric [probs b/c E1 didn't know how to interpret it, N didn't
explain]
* [E2](01:03:00) was not familiar with PCP vis/interaction
* [E2](01:09:25) "hmm" and smile after explanation of PCP usage [one could read it as E2
prefers a table hehe]
* [E2](01:14:10) tasks: E2 was still struggling with the interactions and interpretation, needed
very specific instructions to complete the task ("go here, do this, look for that, go there..."), N
then skipped the other tasks to reduce frustration
* [E2](01:21:20) clicked a lag in ACF but wasn't selected [i think E2 managed to click one of the
1px lines when E2 was searching for a tooltip]
* [E2](01:23:00) "interesting" [as in 'I don't get it'], M explains PCP more, "nice"
* [E2](01:38:00) "which one is used with 0/1 weight? i always forget". later, pointing out
differences in parameters, E2 refers to a lag set of 1-300 as "quite long lags" [which shows that
they don't usually consider lags in the higher 100s/1000s]. E2 mentions the amount of lag as a
difference [and E1 at some point said that parameter exploration involves finding 'how many
lags you need' or something like that, maybe that's a theory topic they research?]
* [E2](01:41:10) mentions that more weight choices in the range 0.9-1.0 would be nice
* [E2](01:42:50) "what is the meaning of the color"
* [E2](01:43:20) is reminded by M about the filter possibility in the PCP
* [E2](01:45:30) "if the eigenvalue difference is high, does that mean there is some structure ...
should i select high ones or not .. what is the optimal choice"
* [E2](01:47:10) browses some lags that were filtered before, mumbles "yeah, not really
[anything remarkable to see?]"
* [E2](01:49:20) [would you select lags in k2 differently than in k1 [collaborators said no]] "i don't
know, maybe i should know the data/application better, now i'm just looking for high
autocorrelations"
* [E2](01:51:00) asks around the computation time and parameter influence there
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* [E2](01:51:40) [M asked why they used PCP filters the way they did] "just thought there might
be structure when ... OTOH you have low value for diagonality and eigenvalues are relly
different ... i'm not sure maybe that wasn't wise"
* [E3](01:07:50) mentions that more values in 0.9-1.0 would be cool b/c otherwise "the quadratic
part tends to dominate"
* [E3](01:11:00) hasn't used PCP either, but managed quite well
* [E3](01:25:00)'s reasoning behind parameter selection: "some higher lags with high diff in
eigenvalues", k2 lag selection should work the same
* [E3](01:48:00) makes new parametrization based on existing one "i'm interested to see what
happens when i drop the quadratic part altogether"
* [E3](01:53:40) makes new parametrization based on existing one but with additional lags,
which E3 directly puts in and asks for more R-like commands in there to resemble `seq()`, bit
later uses that instead of clicking. short confusion around additional dimension when basing
param. on existing. uses eigenvalue difference to filter lags.
* [E4](01:02:10) "everything makes sense but [the PCP] is a bit unfamiliar to me", but after
explanations E4 interacts naturally with it
* [E4](01:07:00) wonders why lag 3000 is such an outlier and bad fit to 143 months [no idea]
* [E4](01:12:00) chooses 3 lags based on autocorrelation
* [E4](01:14:00) about k2 selection: "i'm not an expert ... maybe one shouldn't pick them acc. to
linear autocorrelation ... is it possible to get a quadratic metric?"
* [E4](01:45:20) asks about new dimension, and to have a union filter in the PCP, and to select
all filtered lags at once. some problems with selecting lags because not all pixels in an acf box
have event handlers [or another reason, but hey prototype]. E4 selected default 1:12 plus the 11
monthly lags with highest autocorrelation. in k2 selection, E4 asked if direct lag input overwrites,
and how to reset the default lags. E4 then resets the defaults, types 5 monthly lags from
memory `21,42,63,84,105` and then adds the first 10 `1-10`
* [E4](01:49:30) asks what happens when a new result comes and all colors are used [nothing,
but one could e.g. use a temporary color, not allow a new parametrization when selection is full
or have a different process altogether where the new result is not suddenly pushed into your
visualizations but rather you're informed first and have to actively include it - then at this point
you could choose one color to replace, and it could help regarding change blindness]
* [E5](01:19:00) was "not very familiar" with PCP, but after explanation seemed to interact very
naturally. selected 3 lags based on autocorrelation and eigenvalues. "this whole interface is very
useful, very convenient". about different dimensions in k2: "depends on the data ... if it's real
data, whatever the expert says ... at least partly depends on the application ... [finds out that
autocorrelation dimension is again linear autocorrelation] maybe it would make sense to show a
different measure ... i'm not that familiar with gsobi ... how the implementation is performed ... is
there some nonlinearity unmixing going on in the functional? ... but if [the PCP] is from the
viewpoint of classic BSS that only has linear measures of autocorrelation that [the PCP] is pretty
relevant ... would be relevant to allow to select two lags sets separately ... not sure what would
be a good measure for gsobi that would help k2 selection"

### Impossible Tasks
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* [E3](01:49:20) get overview of existing parametrizations to LOCATE one with desired weight
parameter

### Other

* [E1](00:33:36) used the colored boxes to unselect results
* [E1](01:09:24) spinner not visible because zoom windows / record button from local software
hide it
* [E1](01:19:55) "i think it [selection limit of 5] is good because more it could be too much to ...
[effectively analyze?]"
* [E5](01:50:00) thinks kurtosis is generally more interesting than skewness [which is the
default]
* [E5](01:55:00) asks for a way to remove a single of the time series [b/c DKK is so dominating
in the matrix], also mentions it's very nice to be able to go back and forth while keeping analysis
state [a bit sad we forgot to tell earlier participants about this]
* [E5](02:03:00) mentions that it'd be possible to compare the BSS method to PCA "b/c the first,
whitening step in many BSS methods is basically PCA, so seeing PCA output gives then
information on what the (joint) diagonalization step does ... to have an idea of the importance of
the two [whitening & rotation] steps [N: to get a look into the black boxy thing] yeah ... it reveals
something about what the invariant coordinates are"
* [E5](02:14:50) suggests to plot factors next to cluster overview, points to special figures in their
paper that he'd also use [that presumably plot the individual factors of a component]

### Dataset familiarity

* E1 used exrates before, but mentions around 1:55 that knowing the dataset more would be
beneficial, and having more clear analysis goals
* E2 did not use exrates before, at least didn't mention it, works more on theoretical issues,
mentioned a couple of times knowing data/purpose/domain better would be good
* E3 didn't answer
* E4 noted "at least some version of it" they has seen in the past

## Pre-study questions

### Experience in statistics/BSS

* [E1](00:00:00): studied math/statistics, did PhD about BSS but not teach, 7y in stats research
with RStudio, but doesn't use BSS methods in current job
* [E2](00:00:30): teaching stats at uni for 20y, researching BSS at least 10y, supervised a PhD
in BSS
* [E3](00:00:30): math major, stats minor during study, then did phd in bss. ~10y in stats/bss.
taught statistics courses and bss and some signal processing (where E3 is postdoc).
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* E4: studied statistics from 2009 for 9 years, bss phd finished a few years ago, afterwards
bss-related postdoc in statistics: 10y as academic. postdoc: bss for non-temporal data.
* E5: math masters, studied bss afterwards like asymptotics and adapting existing methods,
some applied work (where domain experts did interpretation), basically finished with phd

### Experience in visualization

* [E1](00:03:00): "cannot say i'm very experienced, maybe a little bit", "only basic things, no web
apps", uses ggplot2 to show descriptive data stats and analysis results
* [E2](00:01:20): using a lot in teaching and research, but "just basics ... haven't done any ...
rshiny apps", mostly static vis like scatterplots, histograms, time series, "basics". generates with
R basic functions in RStudio.
* [E3](00:02:40): "usually looking at source time series ... sometimes real data like EEG/fMRI ...
EEG: 128 components, ~100k time points"
* [E4](00:03:30): "use visualization ... a great way to show information ... don't know that much
tools ... only what's in R like ggplot and base plots ... interesting topic but don't use it that much",
"i usally have scatterplots ... line charts ... boxplots ... i tend to stick with these basic plots ... [M
suggests heatmaps] that's a good point ... i like it ... neat and useful", uses Rstudio
* [E5](00:04:00): "some experience with R, nothing too fancy ... maybe something where i
imported photographs to R, that'd be the most fancy vis thing i'd have done ... [how do you
make figures] always in R ... more convenient than latex ... [in RStudio?] sometimes RStudio or
CLI based R on a server ... [ggplot?] yeah i like to use ggplot whenever we makes the graphics
for publications ... [frequent visualizations E5 uses?] histograms ... line charts ... some extreme
value indices"

### How did they use BSS

* [E1](00:05:00): temporal data, "take lag data and count and see what structure emerges", also
supervised DR for prediction
* [E2](00:02:45): "we're mainly doing ... theoretical research, so it's not really applied", often not
real data, sometimes EMG data (brain imaging), "but mainly theoretical"
* E3 mainly EEG in the past, and phd in asymptotic properties. in current job BSS for
graphs/networks.
* [E4](00:05:50): "[data?] temporal and non-temporal data [goals?] find something hidden ...
latent groups (non-temporal) ... something that strikes the eye/interesting (temporal) ... no
specific goal"
* [E5](00:06:50): [on dataset in their paper] "when using BSS as DR then 1st component always
seems to be like a mean ... objective was that how much of the variance in the original curve
can be explained with how many components ... for parameters we tried different lags and the
one that fit best was the one we chose for the study [strategy to parameter selection?] starting
from small values b/c in the domain’s data that if there are temporal dependences they should
be stronger with small lags, we didn't go very far ... looked at the eigenvalues and tried to
maximize the difference between the eigenvalues [of scatters of Z, that might be autocov
matrices for AMUSE or the 2 scatters from gSOBI]... and looking at the curves"
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### Did they need to explore BSS parameters for a dataset

* [E1](00:06:00): did some "testing which kind of combinations of lag parameters ... work best ...
on simulated data ... see how many lags we need", (for parameters) used MD index to "see ... if
you have too few lags"
* [E2](00:03:00): "not really", [how would you do it?] "visualization would be really important ...
try different parameters ... see how sources [components] look like ... that would be the first
thing i'd do just try different things" [how would you find params to try] "that's a very difficult
question ... i don't really know ... maybe try something at random, see how it goes"
* [E3](00:06:00): "i've done it ... autocorrelation plots at different lags ... with EEG tried only very
short term ... but not anymore a frequent part of work"
* [E4](00:07:00): "yes and also different [algorithms] ... some didn't have parameters, some did
... trying different lags and weights ...[how you went about it] find R package or code algorithm"
* E5: see previous question

### How did they analyse components (visually/numerically, sign & order problems)

* [E1](00:07:40): "don't remember ... use eigenvalues to sort"
* [E2](00:05:20): "you have to know the application [dataset, provenance, domain N assumes]
quite well to know what you are really looking for", some methods have inherent ordering like
FOBI, with BSS there's ways [E2 couldn't recall], mainly the approach is to "plot all sources at
once, see if there's structure", with brain data it's "easy" because you can link a component to a
spatial area [rstudio shortcomings] brain datasets are too large for R, with small datasets it's
"handy, no problems with that"
* [E3](00:03:50): "plot original source i'm mixing and then I plot on same figure found
components and see if they match"
* [E3](00:07:10): "[with eeg] look for something else than white noise ... periodic signals ... or
other time dependence ... then they are more interesting ... mostly i just look at the figures"
* [E4](00:08:30): "very little logic in [parameter selection] ... comparison done mostly visually ...
sometimes there were objectives like [finding ground truth] ... mostly we picked the ones that
looked like they contain most information ... parameter values i'm not sure if there was any
strategy ... trial and error [what about sign] you kind a learn to see inverses, usually it was no
concern ... something you get accustomed to [and ordering?] some [algorithms] have a natural
way to sort components like highest autocovariance at a lag ... [choice of ordering strategy]
influenced the rest of the analysis quite a lot because we only looked at the first ones"
* [E5](00:11:00): "order was achieved nicely by amount of variation explained ... and eigenvalue
difference [and sign?] not an issue anywhere we had this clustering approach ... were able to
cluster the age groups ... sign identification did not play any role ... [and in visual analysis you
just know to look out for it?] yeah"

### Is this parameter exploration important for a practicioner and/or a frequent part of your
work?
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* [E1](00:08:40): "ya, i think ... it's a good idea to see how they're ordered" [N was meaning to
refer to param. exploration in general, but the way the question was phrased E1 understood it to
refer to only the ordering question prior], E1 didn't have the task much in the past or present
* [E2](00:09:30): "[trying random and explore] is maybe not the best ... would be nice to have ...
clear instructions ... there are so many algorithms ... [N: and if there is just one?] ... then
instructions for parameter selection would be nice"
* [E3](00:10:30): "i think so ... also trying parameters is some kind of robustness check to see
that results do not depend too much on particular parameters ... so that they are more reliable"
* [E4](00:11:10): "more frequent in the past when i was a phd student ... maybe now ... someone
else typically does it, but i still do it, but more a couple of years back [good task for a
practicioner] very important ... when you have lots of parameters you should compare them, and
i know from experience that the result changes quite a lot ... would be nice to ... explore more
than with just trial and error"
* [E5](00:13:10): "yeah very frequent in my work"

## Post-study questions / more general feedback

* [E1](01:56:00) thinks that prototype is useful for comparing different parametrizations
* [E1](01:56:20): DKK was surprising and the two equal results with different parameters [that N
mentioned explicitly before]
* [E1](01:58:20): "good in way to see how ... lag choices can .... affect the results and how ...
much they don't", "changing this k2 lags ... really gives much different results compared to k1 so
it's something worth to look at more"
* E1 wants to explore more on their own time

### what do you think of the prototype

* E1: "something i enjoy playing with and ... i like that ... all these things are connected ... and
you see which component is where ... and more DOI functions would be nice ... but can't think of
any right now ... in unmixing matrices it's very easy to see where are the important values ... and
[the correlation slope] i found most interesting to see how components correlate with each other
... and that they are not always aligned ... and also that there's options [to compare in detail] ...
like [superimpose columns] ... and the clustering is also ... a nice addition, but i need to
familiarize myself with it more ... it looks really nice ... after a little bit of using it's easy to use
after the introduction"
* E2: "really nice to play with this ... a few plots were difficult to understand at first but you
explained them well ... still not sure about [projections], i understand the location [which is
without semantics, but hey] but not the size ... [N asks if difficulty is in interpretation or knowing
which space is shown] yeah", "easy to use ... i especially like [correlation graph]", "one thing we
always wonder ... how can we say which result is the best? is there anything? [N explains] yeah
hmmm [not sure if satisfied with answer]", "one has to know gsobi quite well ... some more
explanations would be needed [around whats k1/k2 etc.]", "possibly it would help to know the
application to select lags ... i don't know", "how do you upload a dataset in the prototype ...
[exporting a parametrization to R] would be really nice"
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* [E3](01:58:00) "looks nice ... nice to have this kind of tool to look at results ... much faster than
typing in R to get these comparisons"
* E4 "very cool ... enable things i would not have possible in base R ...[the tasks of comparing a
complete picture of the parametrizations] would be very inconvenient in R ... i would never have
something like this [the prototype or correlation slope?] there so this is very nice ... very visual in
a good way ... after explanations it was relatively easy to use ... the [projections] were
something where i spent the most time [understanding] but when i got it i think it's very useful ...
not sure if i would change it, i get it now but it took some time ... otherwise very intuitive ... along
the way we had some [things that could be improved] like selecting multiple lags at once etc. but
otherwise it's very nice ... [in between next question] the constrained clustering was also
something that took some time in the beginning ... but when you think about it it makes sense
and it's very useful"
* E5: "i like it very much ... this is an absolute time saver ... this would be very useful if you have
an applied example ... i sometimes do these massive computations where i compute all possible
parametrizations [below a selected lag] and pick the best one according to some criteria [e.g.
explained variance] and that's not very time efficient ... i like [the PCP / lag selection] a lot ... i'm
also suprised it's a very functioning prototype, not sure you should call it a prototype anymore,
everything is working quite perfectly"

### something very easy / useful

* E2: "nothing really difficult ... maybe the lag selection in the beginning ... otherwise very easy
to use"
* E3: "matrix diagonality is nice feature ... [bad connection] ... that you can do this model
checking in a time series context [N asks for additional vis/data to look at for this task?] trying
more parametrizations and different lags", "showing the correlations ... easier than looking at
correlation matrix"
* E4: "i think it's very intuitive [that all time series behave the same way] ... it's very consistent ...
ofc you need to know what you're doing, if i haven't ever used [gsobi/bss] then it would be
difficult"
* E5: "the component comparison ... convenient and fast ... but i'd like to see more explaining
stuff, i didn't originally understand [the projections] but now they seem more clear ... also [the
scatter diagonality plots] is something i don't usually have the time and energy to compute, this
is very interesting, might be useful"

### something not useful / too confusing

* E1: "didn't know how to read [the model comparison] ... haven't thought of this much before",
"is there a way to export the results?"
* E1: lag granularity was "unclear ... kind of understood ... but maybe not that much"
* E2: small bugs in lag selection
* E3: better direct lag input, "haven't done this kind of applied analysis lately", the clustering E3
is not sure how to use it but might still be useful
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* E4: "clustering and projections were conceptually challenging but from a UI point of view
they're very natural, in BSS model tab "i don't know how to interpret all of these things"
* E5: "projections are fine if you explain it somewhere, just the dots are not clear immediately [N
points to clustering, E5 is a bit hesitant, clicks around a lot, is then reminded of purpose (find
stable component)] oh yeah that's definitely something you should do at some point
* E5: [N pointed at lag granularity] "yeah maybe it's not clear enough what this does [N: to
control how fine-grained lags are compared] yeah but we still have so few [in the current view
between 5 and 19] [...so you can just look at them]" - a response would be that in the particular
view E5 saw it wasn't obvious that in the gray part of blue result, 2244 and 2257 are just 13 lags
apart, ie very close considering the whole space. upping the granularity to some number
guarantees that lags are shown equally-distant according to the buckets. (it does not guarantee
that shown lags are at least this much apart, which might be easier to understand, but then
harder to compare lags between results. anyways we've learned also that BSS people tend to
choose only few lags because of computation time and convergence.)

### did you miss anything, something that was not there?

* E1: "not really ... [labeling of k1/k2] might be confusing for some, to know which part [quadratic
or linear] is which ... otherwise not really"
* E2: "no, nothing really"
* E3: "can't think of anything at the moment ... maybe if it's easier to go back to input data [N: to
compare with components or just look at?] not sure, sometimes you can see from the unmixing
matrix that there is only one non-zero element [M suggests easy possibility to go back to first
window, which actually works but N forgot to mention] yeah that would be [sufficient]"
* E4: looking at sources again in explore view, stuff in the lag selection (select all at once, better
direct input interface), have a quadratic metric for the quadratic part "whatever that is"

### opposite: something to remove?

* E3: "nothing really"

### how does prototype compare to rstudio

* E1: "Rstudio it's like ... copy/paste this and run again ... and it's harder there to compare
results side by side, prototype is good for that ... that's a very valuable thing", "in Rstudio you
couldn't do [the interactive 2d projections] and see how it's connected ... i think that's great",
there's more structure in the process because "immediately you can ... see how [a result]
compares to other results, to other choices"
* E2: "[prototype] does almost the same things ... [matrix vis] is very nice ... and seeing all
components at once and the comparisons ... and [interactions with time series] that's really
nice", E2 would plot components next to each other also in RStudio but doesn't know if it works
with that many time series
* E3: "from my perspective ... not so big difference ...but for someone [inaudible]", "when i would
have the data/code then it would be not so big difference ... but having something like [the
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prototype] available which would make it kind of simple for any new data that i have maybe it'd
save a lot of time"
* E4: [see wdyt part]
* E5: "in some things [the prototype] would be a huge time saver, esp. if you're doing applied
work ... i [focus] on theoretic work, so i have simulated data and stuff like that so ... and i use
methods that are not really available online ... but for someone doing applied work it would save
a lot of time, esp. if they're not so comfortable in R programming ... to get the basic diagnostics
done like finding stable components and testing many different lag sets and doing the
comparison ... to see how sensitive your analysis is on the lag set ... if this was available i would
definitely ... tell some master students to use this"

### how to improve prototype more

* E1 was too tired at this point, so we settled on email
* E2: "[e.g. with more DOI functions] i don't know, [skewness/kurtosis] are quite alright", more
explanations
* E4: show all different parametrizations [in a table or something]
* E5: "i don't ... i like this a lot ... really advanced work", "this framework is really nice ... maybe it
would be nice to increase the availbility to allow upload/import of data that might not come from
gsobi" [like a method-agnostic data exchange format and analysts could export from R and
import to the prototype]", again points at suspicious values of MD index

257



# TBSS Interviews 2

This document is a transcript of the video interviews and second round of user studies, grouped
by interview phase and visual component (which is related to one or more tasks). Note that,
even though these are extensive transcripts, our goal here was not to capture everything, but
only parts relevant to our research questions. While we tried our best not to, we might have
missed or misinterpreted relevant situations. This is inherent to a qualitative research approach.

* researchers are referred to by 1-letter initials (N, M)
* participants are referred to by 2-letter codes (E1, E2, E3, E4, E5)
* [XY](hh:mm:ss) is a point in the video of participant XY, eg. [E1](01:12:00) refers to the video
of E1's study, at 1 hour 12 minutes
* quotes "" show verbatim quotes from participant, ellipsis is used when something else was
said in between
* researcher interpretations or remarks/notes are in square brackets [...]
* text without quotes or brackets is a summary by a researcher

## Observations

* [E4](00:21:10) "i really like the changes, it seems very streamlined"
* [E4](00:48:00) [asked about the binary search approach, if he'd do it in rstudio too] "probably
yes ... i'd be interested in stuff like that, seeing how stable the solution is wrt to the selection of
particular lags" [it was an early design idea to automatically compute how result changes when
a lag is added/removed, but was discarded b/c need to compute BSS for almost every lag of
every result! even with some smarter selection you likely need to compute tens of lags, which
takes too long on a single thread/cpu.] "but i'm not sure if i'd have thought about [this approach]
just with rstudio"
* E2 had a kind of slow machine, interface was more laggy than with other participants

### Data Load

* [E4](00:26:00) uses time series and new controls naturally
* E3 doesn't look at input time series in the first screen in intro section [N later noticed that E3
rarely used the time series interactions, not sure why]
* [E3](00:34:00) confirms it's the same data as last time, then skips this step to save time
* [E2](00:02:30) interacts with input time series tentatively, but not looking for anything
* [E2](00:37:30) zooms into volatile 08/09 section, resizes Y axis
* [E1](00:01:00) remembered Xzoom interaction, Yzoom was explained quickly
* [E1](00:25:00) zoomed into volatile 08/09 region, not sure if looking for something specific. bit
later even used the zoom reset button in the toolbar which we never talked about.
* [E5](00:02:00) no problem using the controls as instructed, just initially confused about the X
zoom reset button (which is hidden when no X zoom was done)

Second Interview
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* [E5](00:32:30) "i have no idea what half of these currencies are". explores a bit, notes spike in
TRY, confirms the year, mentions it's "probably when they brought in the new currency" [not
100% correct: "On February 22th, 2001, the government allows the lira to float freely.", but cool
that E5 made hypotheses at this point already], "we will probably see this spike in the
components"

### Explore

* [E3](00:38:00) while waiting for a result, N asked if timing (how long did it take to compute
result) would be interesting as well? "one could also use number of iterations" [but E3 doesn't
confirm it's smt interesting] the result appears in the meantime but E3 didn't notice it happening.
* [E2](00:38:00) "so what's the idea" [seems lost as to what to look for]
* [E5](00:35:20) wants to see the sample size (ie., how many time steps do the series have)
* [E5](00:52:10) tries to distribute the orange color but that doesn't work

#### Table

* [E4](00:04:40) visual summaries made sense, encoding of lag sets is "very handy"
* [E4](00:27:00) selects [without being told how, actually] 4 exsting converging methods for
inspection and looks at lags in more detail.
* [E4](00:29:10) tries add 5th selection, which is not possible but wasn't explained either
* [E3](00:07:00) [some discussions around the two 'weight' concepts]
* [E3](00:35:00) uses table to get an overview of used lags and hovers a lot over the summaries
to see the actual numbers. notes that one method didn't converge, and wants to "see if a small
change [to the parameters] changes that"
* [E3](00:39:00) notices that we don't use a linear scale in the weight parameter - oops. N did
this change to give more space to what was often called the interesting range of `b`, 0.8-1.0, but
then forgot about it. due to small labels and .8 marker almost in center, nobody noticed.
[seemed not like a huge problem tho]
* [E2](00:05:00) nods and "hm"s when N explains the table [seems like all clear]. asks how one
can put own data in [which E2 also asked last time so it could be they’re actually eager to try it
with own data they know]. task to compare lag sets, N framed badly, E2 tries to compare in
detail (single lag resolution) from histograms instead of high-level differences (uniform/skewed
selection, more short/long lags), and gets confused about the encoding. M explains it's a
histogram and meant to provide an overview.
* [E2](00:38:40) asks, as in 1st study, what k1 and k2 is (which one is SOBI), N points to
tooltips. E2 hovers a lot in the histograms [as if looking for something], N points to parameter
comparison [E2 doesn't seem satisfied], N confirms if E2 is in fact searching, but "just
comparing" [seems like a better strategy for E2 would've been to identify 1-4 methods, then
select and view them in parameter selection]. E2 selects 4 and looks at other views.
* [E2](00:41:20) has green method selected and wants to unselect. E2 clicks, and in fact
unselected the method, but since green is now the first free color, the row stays green as there's
no visual difference between selection and hover state. [E2 seems confused about whether the
action worked.]
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* [E1](00:05:00) solved first task well. asked to describe difference between two lag sets (one
with uniform distributionm one with only short lags), got that also right but tended to hover a lot
like E2 and E3 :/
* [E1](00:11:10) collapsed table
* [E1](00:25:40) correctly identifies that from 5 initial results 4 converged
* [E1](00:27:30) selects 3 param.s for closer inspection (only k1, only k2, both k1/k2).
accidentally changes desired color as E1 misselects one (blue), selects the correct one (purple),
deselects the wrong one (blue freed up).
* [E1](00:39:50) collapsed table earlier, like 10m or so, now forgot that it's there.
* [E1](00:50:20) downloaded a method, opened it. "awesome"
* [E5](00:06:00) didn't get at first that background color encodes success, but after N explained
a second time, it was fine ("ahhh i see")
* [E5](00:34:30) selects all 4 converging methods to compare parameters

#### 2D Result Projections

* [E4](00:08:23) [possibly tried to compare similarity of 1st and 2nd components by shape of
plot, ie., do points go nearer or farther]
* [E4](00:31:00) clicks through n-th component projections to learn how *all* components of the
methods compare [there are better ways, like the "all components" projection, or the component
comparison]
* [E3](00:09:00) didn't use the projections much in introduction, but also didn't ask about them: "i
think it's all clear" [N felt it wasn't]
* [E2](00:13:00) N chooses not to explain in too much detail. [N: this view wasn't popular among
other participants, so it would probably take much time for something that won't be used. ofc
then E2 is even more likely to not use it, but in the moment it seemed reasonable. a better
alternative would have been to explain it not in technical what-is-it terms but rather
look-for-this-then-do-that instructions.]
* [E2](00:40:20) notices red and purple have similar components "i'm surprised that they're so
similar", then collapses this view to make space for comparison section
* [E2](00:57:00) compares component projection of old and new result, concludes they're the
same b/c points are next to each other [size encoding tells different story, but we didn't explain
that in the introduction for time reasons]
* [E1](00:07:00) [we introduced it but skipped tasks as E1 was nodding a lot and using it
meanwhile, seemed like it was clear]
* [E1](00:26:00) used component projection to investigate two points near each other,
[presumably, can't really tell from zoom recording] looked at table how they compare in terms of
parameters
* [E5](00:09:00) N rehashes quickly how they work, asks if that makes sense, E5 "yes", moving
on
* [E5](00:34:50) uses component similarity, sees that red and green are very similar "although
the red doesn't use the linear part"

#### Component Overview
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* [E4](00:33:25) tries to find if blue finds similar components than red and green, but ofc it's not
working well here as no attribute is preattentive. for that, N reminds of changing cluster size and
ordering later.
* [E4](00:47:00) again clicks through n-component projections, then realizing it's the same
information as one row of the slope graph.
* [E3](00:14:30) after introduction asks "how did you define 'stable'" [maybe it wasn't clear that
many dark bars mean all similar components, which means (with minimal cluster amount
setting) that this component was found in all results, and therefore is what they called 'stable']
* [E3](00:39:30) explored components, opened first cluster, noticed one that didn't quite fit to the
others, then proceeds to component comparison for more detailed inspection of the result
* [E2](00:15:30) "so [a stable component] means that i can find this component in all results?"
yes
* [E1](00:09:40) found stable and unstable easily [N didn't point out how to do same task with
different cluster number]
* [E1](00:26:30) used component overview to get more detailed picture than similarity
projection, ie., which components do the 4 methods agree on, which not
* [E1](00:28:00) has 3 selected, checks which color disagrees on most components [cool idea,
but from vis perspective would be cooler to start with empty selection, hover around table or
elsewhere and assign 1-2 colors to most disagreeing methods. reason being that disagreeing
components are very light in rank histo, and their color hue is not well perceptable.] unclear
about hidden context-dependent action on time series label ("can i flip [the component] here?"),
tries it out (deselect, select) and accidentally changed color to blue b/c that was free and
preferred.
* [E1](00:45:00) looks at where green and purple bars are in each row to compare how they
differ [would have been better to deselect the other colors]. N points to component comparison.
* [E5](00:11:30) task "find components that don't agree much", E5 looks around the similarity
projections, but seems to stem from ambiguous wording by N. after that's cleared up, E5 finds a
non-agreeing component quickly "by looking at the histogram" (mostly using position, N reminds
that opacity is another way to tell)
* [E5](00:36:30) inspects first component, realizes it's the same spike as in TRY, goes to matrix
view to verify
* [E5](00:49:00) asks how to interpret rank histogram

#### Parameter Comparison

* [E4](00:27:00) wants to see actual histogram, but forgets changing bin width is possible.
un-hides empty bins such that k1 and k2 are aligned, increases bin size by 1 to 43, when the
whole thing fits into their screen [possibly add option to auto-fit to screen?].
* [E4](00:30:00) compares distribution of lags in both spaces, while relating them to the
projection view. as it's not clear when the square width can be compared, E4 wrongly compares
between "all components" and "n-th component", which have different metrics.
* [E4](00:33:00) switches between bin sizes, accurately compares lags
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* [E3](00:18:30) N: does the lag set histogram make sense? (pause) E3: yeah... ["i guess"] [N
felt nonetheless that E3 'got' it after being introduced to the hidden bins]
* [E2](00:18:00) frowny face :/ changes bin size, but bars don't change height b/c the selected
lags are few and far apart [seems to confuse E2]. also un-hiding empty bins with bin size (a few)
takes long enough to trigger evaluation gulf, and E2 clicks again.
* [E1](00:11:20) used everything while N explained, so we skipped tasks
* [E1](00:29:15) points out lags are very different between red and green and b/c of bin size 1
one shouldn't show all bins as it'll get super wide. immediately recognized long lags too. not
sure if E1 compared bar lengths between k1 and k2, which is not allowed.
* [E5](00:14:30) seemed to understand new lag set vis just fine
* [E5](00:43:00) removes blue param. because "i don't think it's very realistic in this currency
dataset to look at linear dependencies (...) very long time into the history". E5 then wants to
change green param. which E5 thinks is a more realistic lag set.

#### BSS Model

* [E4](00:16:20) [discussion about 4th CC scatters] "they are nice to have there, but yeah i
agree [that they're maybe not useful to see when only SOBI was used]
* [E4](00:39:00) [checks 4thcc] "somehow the smallest lags were most important" [not sure what
E4 means]. [concludes that there are no large differences that would be worth investigating.]
* [E3](00:21:30) uses scatter diagonality views correctly, doesn't comment on it
* [E3](00:48:00) superimposes scatters, concludes no big difference, but would like to see used
lags at the same time [doesn't work]. N tells to juxtapose, but lags are very badly visible b/c
spread far apart and thin due to lag bin size [maybe ~10 would be a better default, but that's
confusing in other ways]. E3 superimposes again and zooms in, concludes they are similar
"which is interesting b/c one doesn't use the k1 lags at all, maybe there should be some
difference". E3 changes colors, notices differences in 4th cumulant "makes sense that blue one
is lower b/c it only uses k2".
* [E2](00:19:40) asks what the "lag" label means, N explains scatter diagonality per lag is
shown. E2 asks what's it mean when diagonality is very high, "the corresponding lag is not
useful? can you say it like that?", N points out that one also needs to verify the parameters, then
moves on [should have explained more, in retrospect, but it was probs because of time]
* [E2](00:42:00) the view is too wide for the screen and E2 doesn't notice that a portion of lags is
cut off.
* [E2](00:42:50) unclear about interpretation of scatter diagonality "so these lags we shouldn't
use?" N explains how this view can be used to find new lags to try, E2: "hmm" [seemed not
convinced]
* [E1](00:13:30) again used everything while N explained, skipped tasks
* [E1](00:30:20) compares scatters, notes again green lags are "all over the place". zooms into
range 1–180 to find differences.
* [E5](00:17:00) seemed to understand views. task "how do autocov. matrices compare", E5
mentioned "they're quite similar even though their parameters [lag sets] aren't", then notes that
red param. does not use k1 lags, so not super-clear if one should even be looking at "k1
diagonality". [N did discuss this matter with collaborators via email at some point, but we feared
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hiding such situations by default might be too restrictive, and they mentioned that if we do it
there should be the option to see it regardless, so we just left it.]
* [E5](00:53:40) "[autocovariance matrices diagonality] look realistic, nothing too interesting
going on"

#### Matrix comparison

* [E4](00:36:10) [after reminder] "i would look for black rows or columns", finds USD and HKD
inputs (practically same), and one component that's "not influenced by a single input"
* [E4](00:45:00) first uses this view and MD-index to check if new result changed compared to
others. notices most influential inputs are the similar, but overall it seems better separated (less
gray squares).
* [E4](00:49:00) again first uses this view and MD-index to check if new result changed
compared to others. notices it does, and the lag 4 in fact changes something "but i cannot say
what"
* [E3](00:23:00) doesn't notice the time series are shown underneath matrix because smh it's
exactly below the fold, and didn't notice the color change in labels of the matrix either (which tell
where something is selected)
* [E3](00:43:20) uses scaling checkbox to get rid of DKK column, then notices USD and HKD
have high values in many components. N asks how would E3 figure what's going on [leading up
to JUE2 LOOK AT THEM], E3 mentions there might be a connection between the two but
quickly redacts that statement with "mh, well, idk", then points to components with single high
factors. N reminds that viewing inputs/components here is now possible, E3 selects PLN and
RUB to check, observing that they look very similar to the components, thereby confirming a
high influence. discussion returns to USD/HKD, N again suggests to look at them, E3 would like
to *just* see the inputs without the components, in the end notices USD and HKD are the very
similar but doesn't conclude anything from here: "somehow they are present in very many
[components]"
* [E2](00:22:50) some confusion around row/col encoding [seems otherwise clear]
* [E2](00:44:10) labels seem kaputt in E2's browser, a bit too large and dense. E2 just quickly
looks at matrices, unsure if at MD heatmap too, clicks in a DKK column, moves on. N brings E2
back at (00:46:10) to nudge E2 to investigate DKK by scaling factors. E2: "i wonder why [scaling
inputs] affects the result so much" [reasoning probs was that BSS is scale invariant and scaling
inputs shouldn't affect anything, so maybe N should have explained in more detail how this
works]. N nudges E2 to compare value range of DKK and another column, but E2 has difficulties
increasing Y axis. E2: "yeah i can see the scale is different but still this method should be scale
invariant" N: "but wouldn't factors be different when using scaled or unscaled inputs?" [E2
seems unsure and moves on]
* [E2](00:57:50) compares old and new result, but skips MD index heatmap and goes straight to
matrix encodings. reorders matrices so old and new are side by side. scales input. [different
patterns emerge, one has less gray cells] N: "how would you say did the results change with the
added lags?" E2: "not really, i wouldn't say so" [maybe b/c the same cells were black?] N wants
to discuss but E2 moved on.
* [E1](00:15:00) skipped tasks, seemed clear
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* [E1](00:32:30) wanted to see parameters also here, had to go back to that tab to see which
was the one with b=0. [could have un-collapsed the table too]. notes DKK has high factors
everywhere and USD too in most. [N points to scaling factors] "now it seems completely
different" [N asks how to investigate HKD and USD which have high factors in many
components] E1 selects them in common row, "they seem similar" [E1 clicks through
components, maybe to see if any has HKD/USD features?] [N asks what to do when 2 inputs
are ~same] "check how they correlate to each other ... maybe i'd check that a bit more [to see]
what's going on there" [in R, I'd assume]
* [E5](00:21:30) no problems or comments
* [E5](00:36:50) scales factors, confirms that 1st component is mostly influenced by TRY, goes
on to compare factors and components. e.g., E5 notes that in the linear-only param., TRY
doesn't "dominate" anymore. the scaling functionality is "good to have b/c otherwise it looked
like DKK dominated everything ... a very good thing". N wants to point to fact that USD and HKD
are the same series, by asking "do you see other interesting pattern". E5 asks where to see the
DOI values, N explains, E5 mentions he'll not consider components after the 4th "because
values are so small", then goes scanning the first four rows of matrices and says E5 doesn't find
any [the HKD/USD shizzle starts at the 6th in the blue result].

#### Component Comparison

* [E4](00:32:00) [after being told] investigates components of two results with slope graph, sees
that they're the same: "it's weird [because red uses only some k2 lags and green has more
weight (both meanings) on k1]
* [E4](00:49:20) [on its own] checks how components between new and old results compare
with slope graph
* [E3](00:25:00) doesn't comment the introduction whatsoever
* [E3](00:40:20) adds/removes different methods in search for one specific component that was
discovered earlier in the overview. [would be easier to go back to the overview and select the
result from there, but E3 collapsed the overview and then probs forgot that it existed]
* [E3](00:41:00) after the search session before, ended up with a suboptimal color combination
of green and blue (hues too similar to distinguish them in crowded images). superimposes,
looks at sparklines of 1st component, "it's very similar", wants to confirm with correlation slope
(0.7x correlation), then doesn't find the differences due to the mentioned color issue and small Y
axis of the sparklines. N tries to solve the latter issue but no avail for a few minutes. E3 may
also have thought that the sparklines encode correlation of the currently visible time range [N
thought about this in the designs, but then for consistency other views would need to work the
same, which then required too much computation]?
* [E2](00:25:40) groks slope view well, as in last session
* [E2](00:45:30) uses slope graph to verify that red and purple are same, tries superimposition
[but then seems lost again what to do]
* [E2](00:58:10) uses slope graph again to compare old and new result. some components are
same (9/23: 1-5, 8-10, 16), but others not. E2: "some changes but not much differences"
* [E1](00:17:30) skipped tasks, seemed clear
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* [E1](00:36:40) uses correlation slope, "blue and green really don't have many similar
components" [few thin lines]. E1 investigates red 13 and green 9 "they seem somewhat similar"
[0.71 correlation] E1 flips green 9 to see if it better aligns with red features.
* [E1](00:45:40) compares old and new components with slope graph [after N's suggestion].
verdict: somewhat similar, but not equal, new still very dissimilar to the one we compared the old
one to. "you have to be careful with the parametres because results really can change a lot"
* [E5](00:24:00) no questions, comments or problems as far as we could tell
* [E5](00:45:00) compares a result with same result plus one lag, mentions there's not much
difference [in the first four components which E5 defined before as interesting, after those there
are changes.]. changes sign, removes some other results, superimposes etc. mentions that at
this point one would probably need to know stuff about currencies to tell which of the two is
more realistic.

#### Toolbar

* [E4](00:20:30) [change order by d&d] "very nice ... very handy"
* [E4](00:31:55) reorders results easily
* [E1](00:19:00) also
* [E1](00:37:00) again
* E5 also... seems that really worked for everyone

### Parameter Selection

* [E4](00:24:00) asks for possibility to remove all selected lags at once [would work with the
explicit seq-like syntax: -1:300, but we didn't implement that]
* [E4](00:41:00) wants to take one of the two same results and change lags, see how it affects
result. doesn't use "refine" function at first b/c thought that it would overwrite the existing result.
adds k2 lags 4-10, doesn't use interactive views. "if i didn't know what i wanted, i could use
those." reasoning: if all information was in 1-3, result wouldn't change with 4-10 added.
* [E4](00:47:00) refines exsisting, removes a few lags without problems
* [E3](00:29:30) [N explains whole view] "mhm"
* [E3](00:36:20) changes weight to 0.5, then wonders why 2 dimensions are missing [because
they're computed with W, which we don't have]
* [E3](00:51:20) sets weight to 0.98, dynamic marker is then close to 1 and it looks like 0.981,
which was somewhat confusing [different color would help, otoh the selected value is printed in
2 other places.]
* [E3](00:52:00) doesn't use filter buttons and works in day resolution, tries to do an OR or
UNION filter. ends up with 3 lags, remarks that they have "high autocov eigenvalues" [but the
data range there is like 0.0001 to 0.0005, so not that high actually]. selects one, doesn't see it's
selected b/c lag set is behind zoom gallery view. ends up selecting top 3 for eigenvalue and
autocorr. metrics for k1, and top 2 [guess E3 wanted 3, but bugs] for autocorr. for k2.
* [E2](00:27:40) "this was the tricky part also last time", some bugs with lag selection (clicking
ACF lines doesn't work). "N: could you select any 2 lags? E2: ... no?" [struggling with unfamiliar
visualizations and interactivity here ]
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* [E2](00:50:30) refines parameters. when looking at lag selection "mhm..." E2 uses PCP
correctly, but there's too much data and it's a bit fiddly (and the ACF plot doesn't show stuff),
and also slow b/c we wait a long time for render updates. we finally switch to Monthly lags. E2
selects lower 4th CC diagonality b/c interested in "better separation" [unsure what E2 means.
probs idea is that a matrix that separates inputs better, also has more diagonal scatters?]. E2
ends up adding 2 largest k2 lags with high scatter diagonality.
* [E1](00:21:00) used PCP quite well while N reiterated how it works, also hovered around the
MACF and looked at things [not sure what]
* [E1](00:40:50) [wants to add short lags to a method] weight stays same. in k1 selects a whole
bunch (~1000) of lags in the middle [not sure why], immediately changes to first ~350 daily lags.
too much stuff, filters to weekly and looking at maybe first 50 weeks. adds first 2 weeks (5, 10)
to lag set, skips k2. no change blindness when new result came.
* [E5](00:25:50) says they "recall the picture" and starts brushing right away [cool] in the daily
resolution [bad] which freezes the interface. N points to filter possibilites, E5 filters to monthly, N
explains rest and E5 chooses 3 lags without further problems. E5 asks if changing filter affects
selected lags [no]. E5 "i think this is quite intuitive"
* [E5](00:43:20) refines existing, leaves weight the same, uses direct input to add lag 365, which
E5 thinks corresponds to a year [it doesn't though]

### Discussion

#### What do you think about the prototype

* [E4](00:50:40) "could be [a learning effect], but this feels more streamlined to me, it was easier
to use", "i was not missing [the clustering] [in the component comparison]", "smooth to use"
* E4, new scatter type: "thought it would be nice to have a k2 counterpart and here it is ...
specialized b/c few people know it and less people understand it, not sure what i can conclude
from here, but it's logical to have it", maybe some some alternatives to 4th CC exist, but we're
all not sure
* E4, matrix update: works as expected, just maybe also SHOW a whole row/column?
* E4, table: "nice way of presenting, i like the histograms and weight ... makes a lot of sense",
confusion if method names are color codes, and reason for showing
* [E3](00:58:20) "nice changes to last version ... like [scaling W factors], also sign change ... so
you can better compare it to other components. [like i said last time] nice prototype, it's
interesting to analyse the data with this"
* E3, power scale with b: "maybe not a bad idea, was just difficult to see"
* E3, similarity proj.: "i don't know the MDS thing so well... I understand the idea, but idk what to
make of the [MDS coordinates]"
* E3, new scatters: "maybe [i was] not [missing it before], but ofc interesting to include it as well,
not just the autocov.... i think it's a good addition"
* [E2](00:59:20): "easier to use than before, really nice improvements", "really much better than
the previous one"
* E2, component overview: "wondering how to use these to select new lag sets", N explains it's
not primary purpose but one could look for outliers and form new ideas about parametrizations,
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E2 "but now we have a bunch of results and you still don't know which is the best one", N
explains a possible sequence of checks and comparisons through the interface, E2 mentions
asymptotic variances and to use the result which gives smallest such variances "but maybe
that's computationally really heavy", N mentions that one can download data to do specialized
analysis, E2 [points to cluster of 3 results in component projection] "that's really nice if you have
these results, that you prefer this kind of lag selection, i think that would be nice ... to know here"
[pointing out that more guidance how to use component projection would be good]
* E2, downloadable results: "that's really nice"
* [E1](00:51:30) "many changes i didn't think of them but when i saw them i thought this is nice,
so that's good", "i like the table for the immediate overview, it's in a good order", "here [in
component overview] it's a bit difficult [to remember the time series interactoins]", "you can see
easily in the histogram when you have low and high lags", "[matrix visualizations] is a nice view
to see how different they are", "and that you [can see the components]", "the reordering thing is
one that i didn't miss last time but i really think it's a good thing, it's very simple ... very
convenient"
* [E5](00:54:30) "quite easy to use, last time i used it [some time] ago (...) and still i feel i can
use most of the stuff, [therefore] it's somewhat intuitive, that's a good thing"

#### Difficult stuff

* E4: ordering in component overview wasn't clear, projections are good but seeing a different
scale not in the projection but in the legend was not intuitive at first
* E3: [seeing lags already in the table] [N: i guess we could add them to the tooltip, but that has
limits as well] "but maybe it's not even something i would recommend to do" [N: the underlying
problem was that he'd have liked to see parameters together with the scatter diagonality, but
they're already there, just with a very fine default]
* E2: which direction is the good direction for different metrics (e.g. scatter diagonality)?, lag
selection in general
* E1: "can't remember, always asked when there were issues"
* E1, scatter diagonality: not intuitive what to do with it, didn't recall it. N reiterates how we
thought they could be used. N: "does that make sense? did we get something wrong?" "[more
scatters diagonal = better] makes sense" [but E1 doesn't seem *very* sure about it]
* E5: "i feel i didn't run into any problems" [N pulls notes]
* E5, sample size: important piece of information to see if large lags make sense, at some point
estimations become unreliable
* E5, hide/minimize all components after N-th: no, sometimes there's interesting stuff in the
lower-ranked ones too
* E5, subset in projection: somehow we didn't discuss it b/c there were questions around the
metric used
* E5, freely arrange components: might be useful, but you can also look at them side by side
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#### Easy stuff

* E4: slope graph & ability to change order
* E3: "you can very fast get an idea of how similar different methods are [with the component
overview] ... and if you have [similar components] but they are in different positions"
* E2: table overview "really nice, really useful", changes in matrix view "nice that you can look at
[components, inputs] in more detail", tooltips "nice"
* E1: reordering
* E5: "the most relevant stuff is easy to do", [N: like what] "the mixing matrices that you can get
this graphical representation of the numbers, looking at this is always important, it's also
important to compare different [component ensembles] this is a very straightforward way to do it
[the slope graph] (...) it's very convenient to do here (...) i think the visualization [N: not sure
what E5 refers to, is gesturing with pointer to the lag set vis] is very nice"

#### Unused stuff we talked about

* E4: k1/k2 similarity projections too abstract, likes histograms better
* E5, download RData: didn't realize that variables are added to global environment

#### Anything missing

* E4: no, but already knew what to expect [and not many things were actually added]
* E3: "no new ideas, i think it's very good"
* E2: use own data
* E1: colorblind color palette
* E1: due to USD/HKD issue, one could add correlation slope between inputs and inputs to see
how they correlate to themselves (would need to take care to not show the obvious 1s). E1
mentioned he'd go into R for this usually.
* E1: free ordering of components, but not necessary, as one can get any order underneath
matrices
* E1: go back and forth between screens [works to some extent]
* E5: "i don't think so"
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tsbss-vis cheat sheet 
 

Time series 

Lag selection 
Lag Filter 
Multivariate ACF 
Source & Scatterplot 
Selected Lags 
Direct Selection 

Explore view 
Global controls 
Method & component overview 

Method overview 
Component overview 

Cluster 
Comparison 

Parameters 
Matrix 
Components 

 

Time series 

 
 

 
 

Purpose Interaction Encoding 

How-To’s, Interview Guides and Post-Study Feedback Questionnaire
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● Show time-dependent 
variable 

● Brush (left click + hold 
+ move) zooms into 
brushed time range 

● Double left click 
resets time zoom 

● shift + left click 
increases Y resolution 
up to 3 times 

● Right click resets Y 
resolution 

● Hover shows time 
scale if Y resolution is 
small 

● Label may be clicked 
to trigger an action 
depending on the 
context in which the 
time series appears 

● If line is not black, it’s 
a component 
belonging to that 
method 

● Label on left side is 
either source series 
name or component’s 
sort position 

 

Lag selection 

 
 

Purpose Interaction Encoding 

● Select one or more 
lags 

● All views are linked, 
so one influences 

● Color saturation 
encodes the lag 
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others. See following 
sections for details. 

length, ie. more 
saturation = shorter 
lag. 

Lag Filter 

 
 

Purpose Interaction Encoding (parallel 
coordinates) 

● Find interesting lags 
according to one or 
more derived 
attributes 

● Brushing on 
dimensions filters 
displayed lags in 
Multivariate ACF 

● Clicking outside of the 
brush on a dimension 
removes the brush 

● Brushes can be 
moved 

● Radio buttons on top 
filter lags in this view 
by equivalence to 
calendar intervals 
(days, weeks, months, 
years) 

● Each vertical line is 
one attribute 
dimension 

● Every other line = 1 
lag 

● Attributes of lag can 
be read from where 
line intersects 
dimensions 

● Attributes of 
highlighted lag are 
marked with small 
triangle 

● Attributes of selected 
lags are too, but 
triangle is further 
away from dimension 
(not visible) 
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Multivariate ACF 

 
 

Purpose Interaction Encoding 

● Show autocorrelation 
of multiple sources 

● Hover over lag to 
highlight it in ​Lag 
Filter​ and update 
scatterplot in ​Source 
& Scatterplot 

● Click lag to 
select/deselect it 

● Radio buttons on top 
change how lines are 
sorted: variable name 
(alphabetical) or 
autocorrelation value 

● One “box” is one lag 
● Every line encodes 

the autocorrelation of 
a source at that lag 

● Saturation again 
encodes lag length 

● A black line encodes 
that source is selected 
and visible in ​Source 
& Scatterplot 

● Bold font and darker 
border encodes a 
selected or 
highlighted lag 

Examples 

Predominantly positive 
autocorrelation in 
sources at that lag 
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Predominantly negative 
autocorrelation in 
sources at that lag 

Little autocorrelation in 
sources 

 

Source & Scatterplot 

 
 

Purpose Interaction Encoding 

● See correlation 
pattern in a source 

● Select box on top 
changes which source 
is selected and thus 
visible in time series 
and scatterplot  

● Scatterplot shows 
source vs source at 
highlighted lag 

● Horizontal line in time 
series shows time 
distance of highlighted 
lag 
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Selected Lags 

 
 

Purpose Interaction Encoding 

● Show which lags are 
currently selected 

● Clicking a bar 
removes it from the 
selection 

● Hovering over a lag 
highlights it in the 
other views ​if ​it’s 
visible acc. to current 
Lag Filter​ settings 

● See ​Parameters 

 

Direct Selection 

 
 

Purpose Interaction Encoding 

● For when you exactly 
know which lags you 
want 

● Enter lags and click 
button, lags will be 
toggled (ie. selected 

none 
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when not selected, 
deselected when 
selected) 

Explore view 
Color hue in these views always encodes that data belongs to a selected method. 
 

 

Global controls 

 
 

Purpose Interaction Encoding 

● Change view 
parameters 

● “New parametrization” 
leaves current view 
and opens parameter 
input 

● “Interestingness 
function” changes 
how components are 
sorted 

● “Lag granularity” 

none 
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changes bin size for 
lag set similarity 
analysis (see 
parameters section) 

● “Time Series Y 
resolution” sets Y 
resolution for all time 
series at once 

● “Selection” shows 
how many methods 
can be added to 
comparison view 

● “Visible time range” 
shows start and end 
date in time series 
and allows to reset 

 
 

Method & component overview 

Method overview 

 
(picture is rotated!) 
 

Purpose Interaction Encoding 

● Find similar/different 
methods according to 
components or 
parameters 

● Hover encodes 
distance in size 

● Click selects method 
● For “Components” 

embedding, the above 
selectboxes define 

● Position is a 2D 
embedding (metric 
multidimensional 
scaling) of 
higher-dimensional 
distances 
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what is compared 
(interestingness or 
shape) and for which 
component (all, one) 

● Opacity (for k1/k2) 
encodes weight 
parameter 

● Shape encodes if a 
method converged 
(circle) or not (cross) 

● Size (on hover) 
encodes distance to 
hovered element 

Examples 

Three methods have k1 
parameter more similar to 
each other than to other two 
methods 
 

 

Hovering over green method 
reveals that red and purple 
are not ​very​ similar as they’re 
clearly smaller than green’s 
circle 
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Component 2 (sorted by 
interestingness) of blue 
method doesn’t look like the 
others 

 

 
 

Component overview 
A constrained k-means clustering is applied to components of all methods, with constraints such 
that components of the same method cannot appear in the same cluster. 

Cluster 

 
 

Purpose Interaction Encoding of histogram 

● Find stable and 
unstable components 

● Get overview of found 
components 

● Click triangle to show 
all contained 
components 

● Click number left of 
component to select 
this method 

● 1 bar = 1 component 
● Opacity = similarity 

(eucl. distance) to 
central component 

● X position = sort 
position according to 
interestingness 
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Examples 

Cluster with less similar components 

Cluster with similar components 

Cluster with similar components at same sort position 

 

Comparison 

Parameters 

 
 

Purpose Interaction Encoding 

● Assess similarity of 
lag sets 

● Find out how they are 
same/different 

● “Lag granularity” (not 
pictured) in global 
controls divides the 
range [1..max_lag] 
into equal sized bins. 
Each pictured lag set 
is filtered to include 
only the first lag in a 
bin (see examples). 

● 1 bar = lag set has at 
least 1 lag in bin 

● Y position and color 
hue encode method 

● Saturation encodes 
lag length (short lag = 
high saturation) 

● X position = bin, but 
empty bins are 
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omitted 

Examples 

Similar lags at granularity 1 year (bin size 252) (some bars with same X position) 

 
Same lag sets (all bars have same X position) 

 
Different lags (no bars have same X position) 

 

 

Matrix 

 
 

Purpose Interaction Encoding 

● See how similar 
unmixing matrices are 

● Find highest 

● Hover over matrix 
cells to read values in 
tooltip 

● Similarity encodes 
MD-Index between 
matrices, black is 0, 
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influencing factor white is 1 
● A matrix row encodes 

absolute value of 
factor in ​row​ from 
highest (black) to 
lowest (white) 

 

Components 

 

Purpose Interaction Encoding 

● Find common 
components 

● Find differences in 
components 

● Change slider to 
divide each 
component’s method 
into k clusters (PAM) 

● Toggle ​superimpose 
to overlay all 
components at same 
sort position 

● Toggle ​correlation 
slope​ to show lines 
that connect similar 
components (pictured) 

● Click number of a 
component to open 
and scroll to its cluster 
in the component 
overview 

● Bar left of number 
encodes 
interestingness value 
relative to maximum 
value in method 
(when bar has color), 
or eucl. Distance 
between overlaid 
components (when it 
has no color) 

● Clusters are encoded 
in vertical distance 
between components 

● Line thickness 
encodes Pearson 
correlation (thin >= 
0.5, thick >= 0.9) 

Examples 

Similar components (low distance, one color overlays the other well) 

Different components (high distance, colors do not overlay well) 
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Similar, probably same, components at same sort position (thick, flat line) 

Similar, but not same, components at different sort positions (thin, tilted line) 
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tsbss-vis updates 

 
 

Overview - Table 
Export method 

Overview - Projections 

Overview - Components 

Comparison - Parameters (Lag bin size = 10) 

Comparison - BSS Model 

Comparison - Unmixing Matrix 

Comparison - Components 

Parameter Selection 
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Overview - Table 

Before Now 

None 

 

Had to select all methods and inspect 
parameters 

See all available methods and if they 
converged, their parameters, and additional 
actions 

 

Export method 

Before Now 

None 

 

Could not export data Right icon downloads parameters, unmixing 
matrix and components as .RData file 
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Overview - Projections 

Before Now 

  

Shape distance measured in euclidean 
distance, no axis labels and ticks 

Shape distance measured in correlation 
difference, axis labels, ticks, legend of how 
much difference is one tick is in the original 
MDS projection 
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Overview - Components 
 

Before Now 

 
 

Dissimilarity of components measured in 
euclidean distance, could not tell which of the 
components in a cluster is the medoid 

Dissimilarity of components measured with 
correlation (not prone to sign change, note 
3rd and 4th component in before image), 
cluster medoid has number in bold font 
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Comparison - Parameters (Lag bin size = 10) 

Before Now 

 

 

Frequency in bin not encoded, needed to rely 
solely on color saturation to tell how big a lag 
is, unused parameter omitted (blue k1) 

Frequency in bin encoded with height (ie. it’s 
a histogram now), possibility to display empty 
bins to judge from position how big a lag is 
(however that doesn’t scale well), unused 
parameter shows label 

  

Comparison - BSS Model 

Before Now 
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Used lags encoded with triangle marks, no 
ability to superimpose or zoom  

Used lags encoded with bars from lag set 
histogram, possible to superimpose and 
zoom 

 

Comparison - Unmixing Matrix 

Before Now 

 

 

No labels (only with tooltip), no possibility to 
see standardized factors, no possibility to see 
input time series or components here 

All of that 
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Comparison - Components 

Before Now 

  

K-medoids clustering based on euclidean 
distance, 2 classes for correlation slope, no 
tooltip, could not flip components if they 
seemed to be their respective inverse  

No clustering anymore, 3 classes for 
correlation slope, tooltip shows correlation 
value, can flip components 

  

To compare red and green, you had to 
unselect blue  

Now order of colors/methods can be changed 
and is used in all views (ie. you can now also 
control the order in which components are 
superimposed)  
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Parameter Selection 

Before Now 

 
 

Only 11 available values in 0.1 resolution 0.01 resolution, direct input possible 
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TSBSS study 
 

Interview structure 
Pre-study questions 
Post Study Questions 

Intro & closed tasks 
Vocabulary 
Intro 

Tasks 
Open Tasks 

Interview structure 

● Send email the day before 
○ Send consent form, Z components, cheat sheet 
○ Mention screencapture tool 

● Before 
○ Set up documents and note-taking 
○ Set up stopwatch or other dedicated time measuring device 
○ Restart servers to have clean slate again 

● Intro 
○ Small talk, nice to meet you, thanks for taking time 
○ Are they comfortable & ready to start, remind that they can take a break any time 
○ Introduce ourselves and explain what will happen 

● Ask if they read and understood the consent form, and if they have questions 
● Hit record, make sure ​gallery view is on at all times ​(meeting host settings are the 

recorded settings) 
● Pre-study questions (10-15min) 

○ Pre-study questions 
● They share their screen and ​close unrelated software 

○ Make sure they are allowed (Zoom security settings) 
● Optional: The start screencapturing 

○ Ask if they are ok doing it, if they tried it before, if they did how resource intensive 
was it (Zoom + prototype also need CPU), if in doubt leave it 

● Introductory tour and tasks (target 60min) 
○ http://guidance.cvast.tuwien.ac.at/synth_dist/#/data-load 
○ Define vocabulary! 
○ Intro script 

● Optional: Additional time to explore, click around 
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● Break? 
● Analysis on real dataset (30 min) 

○ http://guidance.cvast.tuwien.ac.at/real_dist/#/ 
○ Open Tasks 

● Post study questions (15 mins) 
○ Post Study Questions 

Pre-study questions (more structured than semi-structured) 
○ How would they describe their experience in statistics in general and blind source 

separation in particular? 
■ Looking for: how long are they in the field already, do they teach it, did 

they publish in the field... 
○ How would they describe their experience with visualization? 

■ Looking for: What vis do they use, what is visualized, do they generate 
them themselves, what software do they use to generate… 

○ How would you describe the role of visualization or visual analytics in blind 
source separation? 

■ Looking for: How often do they use it for analysis, what kinds of 
visualizations do they use, had it helped them in the past in some way, 
where is high potential for vis… 

○ How do you currently use BSS algorithms? 
■ Looking for: What data, what goals, what software, which parameters... 

○ How would they, with their current tools, given a dataset, go about selecting 
parameters or exploring/comparing components? 

■ Maybe frame with an example: Real-world 25-dimensional time series 
with 3000 steps, if we asked them to compare a reasonable amount of 
parametrizations and provide insights how they relate to each other in 
terms of components obtained, properties of components, if there’s a 
noticeable dependency between parameters and component properties… 
How’d they do it? 

■ Looking for: Numbers they compute, plots they look at, interestingness 
functions / projection indices they use, how many runs do they try, 
anything they base parameter selection on? 

○ When comparing components, how do you currently deal with the fact that 
components are not ordered only defined up to sign? 

○ To sum up: What are shortcomings and limits of their current tools in this regard? 
■ Looking for: Lacking interactivity, clutter, information not analyzed, 

scalability… that impede further analysis because it’s tedious 
○ How prevalent is this type of analysis in your daily work? Independent of how 

much, would a domain expert in some field looking to use BSS benefit from it? 
■ Looking for: How often, how detailed 
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Post Study Questions (semi-structured) 
○ What do you think of the prototype? 

■ Looking for: Nothing, free form 
○ Did you encounter tasks that were easy to perform? Which? 
○ Did you encounter tasks that were not as easy to perform? Which, why and how 

could that be improved? 
○ Did you encounter tasks that were not possible at all? Why are they useful, what 

questions would they answer? 
○ How else could the prototype be improved? 

■ Examples: Other measures to compute for scatters, other DOI functions, 
additional vis, other scatters, showing events... 

○ How does the prototype compare to their current tools? 
○ Do you know any BSS practitioners, i.e. domain experts and not part of your 

research clique, that we could get in contact with for future studies? 
■ If not, where would we look? 

Intro & closed tasks 

Vocabulary 
● method = result, or ask how they call it 
● shape = how a time series looks, what features does it have where etc 
● Interestingness = function (time series) -> number 
● Sort position = the position of a component according to the decreasing sort order 

imposed by interestingness function [rank is already something else for statisticians, so 
avoid it] 

● Parameter = k1, k2 or weight (b) 
 

Intro 
Order: Data load (left, right), explore (embeddings, clusters, comparison), new parametrization 
(weight, lag select) 
 
 

● Data load screen 
○ Left side: Input time series 

■ Purpose: Sanity check of data 
■ Interactions 

● Zoom = brush 
● Double click = reset zoom 
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● Option/Alt + left click = increase Y resolution 
○ No way to increase X resolution, need to work around with 

Zoom 
● Right click = reset Y resolution 
● Works everywhere but Lag Input 

■ Tasks 
● Zoom into time range (brush) 
● Expand Y axis (shift + click) 
● Reset both (right click, double click) 

○ Right side: Change Lag Boundary 
■ We run computations and show visualizations only up to this lag, by 

default ¾*N 
■ If there’s domain knowledge that says temporal correlation is lower, one 

can decrease it here. Example: EEG data are long (minutes in ms 
resolution), but Tang et al. say correlation only 300ms after. 

■ It cannot be increased, we assume higher lags would contain too few 
points. 

● Explore screen 
○ Here, ​color hue​ always encodes the selected method. There’s a pool of 5 colors 

that are picked from in deterministic order (red, blue, green, purple, orange). 
○ Components are always ​sorted​ according to selected interestingness 
○ Left: Method overview maps 

■ Methods and parameters are ​embedded in 2D space​. One mark (dot or 
cross) represents one method in every* map. The closer two marks, the 
more similar are the methods. 

■ Since the reduction from e.g. p-dimensional space to 2 comes with 
distance errors, and distances were altered additionally to avoid 
occlusion, the real distances are also encoded in mark size on hover. If a 
close mark changes size on hover -> it’s not as similar as distance 
suggests. 

■ Result map 
● How distance is computed can be changed with selectbox 1: With 

interestingness of a component, or with distance to shape. 
● Which components are compared can be changed with selectbox 

2: All components, or a single one (after sorting by 
interestingness). 

■ Parameter maps 
● Distance encodes lag set similarity (Jaccard) -> very far apart 

means no lags in common, near means a few, close means many 
or all 

● Opacity encodes weight of the parameter -> if barely visible, the 
other lag set was used more 

■ Interaction 
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● Hover encodes distance to hovered method in mark size in all 
maps, and reveals its components in histograms of component 
overview 

● Click selects the method for closer inspection 
■ Tasks 

● Find a pair of very similar or different methods 
○ How/in which way are they similar and different? 

● Find methods that have a comparable first component 
○ Middle: Component overview 

■ A constrained k-means clustering is applied to components such that at 
most k clusters are formed, and components from same method cannot 
be assigned to same cluster. 

■ K input 
● Bars represent a clustering quality metric (cluster separation: 

average minimum distance between any 2 elements of 2 clusters, 
higher is better) that should help inform selection of K 

● K at minimum forces clustering to find the closest component from 
all methods, can therefore be used to find stable components 

● K at another value allows to distribute components into more 
clusters, hence it can reveal components unique to a method, but 
after some value of K, components will be put into single clusters 

● One can also look at minimum K and look for clusters with many 
similar components but one 

● Interaction 
○ Move range slider to change K 

■ Clusters 
● Purpose: Get an overview of all obtained components 
● Clusters are sorted according to sort position of most central 

component 
● Toggler 

○ Shows contained components in cluster underneath 
● Histogram (left) 

○ X Position encodes sort order for each component in the 
cluster, the more left, the higher sorted 

○ Components with same sort order are stacked. The higher, 
the more components are sorted at this position. 

○ Opacity encodes (shape) distance to cluster medoid. The 
darker, the closer. 

○ Good clusters have mostly dark bars in mostly the same 
position, distant gray bars indicate unrelated components, 
distant dark bars indicate similar components with different 
sort position 

295



○ Bad clusters have mostly gray bars, and wide range of sort 
positions 

● Most central component (right) 
○ Shows the cluster representative, the time series closest to 

all others in the cluster 
● Components (when toggled) 

○ Number is sort position in own method 
○ Interaction 

■ Clicking number selects the method 
■ Same interactions as time series 

■ Tasks 
● Find a component that's common in all/most methods, ie. stable 

○ [kurtosis, k=18] would you consider the 5th medoid stable? 
why? 

● Find a component that's found in only one/few methods, ie. 
unstable 

○ [kurtosis, k=18] would you consider the 14th medoid 
unstable? Why? 

○ Right: Method comparison 
■ Goal: Analyze different aspects of 1-5 methods closely 
■ Overview 

● Table of selected results 
● ID is a hash of parameters, useful if you want to find a specific 

method again because colors are not stable 
● Interaction 

○ Use as base opens parameter input with the method’s 
parameters preset 

○ Unselect removes it from selection 
○ Unselect all 

■ Parameters 
● Weight 

○ Triangle mark in hue of method is placed on common 
weight dimension, possibly stacked 

● Lag Set 
○ One bar represents one lag bin, the hue is encodes the 

method, the saturation the length of the lag, X position 
encodes order but empty bins are omitted 

○ Many well saturated next to low saturated bars -> There’s 
a “hole”. Lag sets with interleaved bars -> not similar, lag 
sets with bars in same x position -> similar. 

○ If lag granularity is higher than lowest resolution, only its 
first lag in a window will be used, ie. lags 1-12 and 
resolution 3 days -> 1,4,7,10 
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● Interaction 
○ Show lag numbers adds labels to bars 

● Tasks 
○ Explore 

■ Find a pair of very similar or different methods with 
regards to their parameters, if there isn't any, how 
coarse do you need to make the lag analysis so 
they are? 

● Are the parameters of 37337a and da9f83 
similar? 

■ How does the lag granularity affect their similarity 
and why? 

● Does larger granularity equal more 
similarity? (no because depending on 
granularity bins might overlap or not) 

○ Compare 
■ (Pick any methods that are not very similar and ) 
■ Judge their parameter commonalities and 

differences 
● Is the weight the same and if not what's the 

difference? 
● Is the k1/k2 lag set the same and if no, 

where do they differ? 
● What’s the smallest granularity at which 

they have more lags in common? 
■ Model 

● Difference in autocov. matrix eigenvalue 
○ The R command is there 
○ Plots difference in scatter’s eigenvalues in absolute terms 
○ This is not specific to a method, therefore no hue 

● Autocov. matrix diagonality 
○ R command is there 
○ Plots F-norm of off-diagonal elements in a diagonalized 

scatter 
○ Triangle marks show where lags were placed (top=k1, 

bottom=k2) 
● Tasks 

○ Does the location of lags influence the autocov.matrix 
diagonality? 

■ Matrix 
● Matrix similarity matrix 

○ Shows similarity of unmixing matrices computed with MD 
index of MD(W_a, W_b​-1​) 
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○ Dark = similar, light = different 
● Matrix 

○ Hue on top shows to which method it belongs 
○ Cells are encoded row-wise where lowest factor is white 

and highest factor is black 
○ Rows are sorted by component sort order acc. to 

interestingness 
○ Factors should be normalized iff one is the inverse of 

another, haven’t seen it happen though, don’t know a good 
threshold 

● Tasks 
○ How similar are the matrices overall? 
○ Consider the whole matrix, what patterns do you see and 

how would you interpret them? 
○ Find the source that explains most of the first component in 

a result 
■ Components 

● Here the actual obtained components of a method are shown 
● Component 

○ Left: Length of bar, encoded per method, shows value of 
interestingness if colored, otherwise it’s distance 

○ Middle: Label shows position in method, allows interaction 
○ Right: Time Series with usual interactions 
○ Interaction 

■ Clicking the label opens the cluster its contained in 
the overview, and scrolls to it. This allows to find 
related methods with similar components. 

● Interactions 
○ Divide in clusters  

■ Runs PAM with that K parameter, clusters are 
visible by horizontal separation 

○ “Superimpose”  
■ superimposes all same-positioned components. 

Mostly useful for 2 methods, but works for more. Is 
useful to investigate differences of same-ranked 
components. Bar now encodes sum of euclidean 
distances, ie. long bar -> higher difference 
compared to other rows. 

○ “Show correlation slope” 
■ Complements superimposition and allows to find 

similar components that are sorted elsewhere. 
■ Line length encodes pearson correlation. Thin >= 

0.5, Thick >= 0.9 
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● Tasks 
○ What are the most different components compared to the 

rest (same method)? (set clustering to 2) 
○ Which components are the same shape and same sorted? 

(look for thick straight line) 
○ Which components are different shape and same sorted? 

(look for no line) 
○ Which components are same shape and differently sorted? 

(look for thick tilted line) 
○ Which components are different shape and differently 

sorted? (look for no line) 
○ Which components are similar, ie. not the same but not 

completely different? (look for thin line) 
○ In which month/year can you spot differences? When are 

they the same? (superimpose or increase Y resolution and 
visually compare) 

○ Can you find other results with such a component? (set 
k=p, open its cluster check if other same series is there) 

■ Top: Global controls 
● New parametrization opens wizard for parameter input 
● Interestingness checkbox changes interestingness function 

○ Interestingness: Takes component, gives number. 
Components are always sorted decreasingly according to 
their interestingness. 

○ Built-in: SKewness, kurtosis, but can be anything that 
maps to TS to 1 number 

● Lag granularity changes window for lag analysis 
● Semantic zoom level changes Y resolution of all time series at 

once 
● Visible time range shows borders of current Zoom 
● Spinner indicates loading and shows up on longer requests 

● Parameter Input 
○ Weight Input 

■ Bars encode how often it was used so far 
○ 1-2x Lag Input depending on weight 

■ One of the two is left out if weight is 0 or 1 
■ Same component as on data load screen, but allows to select more than 

one lag 
○ Unfortunately, because R is single-threaded, and many interactions incur 

requests to server, it’s best to just wait until new method appears, to avoid 
hiccups 

○ When finished, the new result is added to the selection if possible 
○ Lag Selection 
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■ Purpose: Select a single or set of lags 
■ PCP 

● Purpose: Quickly find lags with interesting properties for closer 
inspection 

● Like a multidimensional scatterplot with parallel axes and lines 
instead of points: One line per lag, read values where line 
intersects the axis. Selected lags are marked by triangles at their 
dimension intersections, highlighted lag marked by a triangle that’s 
closer than the others. 

● Dimensions 
○ Lag: Just the lag 
○ [calendar unit]: Which calendar interval (in this unit) it fits 

best 
○ Calendar Fit: The fit describes what percentage of data 

point pairs at this lag are this many calendar units apart. 
○ Max Autocorrelation: The highest absolute autocorrelation 

in sources at this lag 
○ Scatter Eigenvalue diff: Sum of differences in absolute 

eigenvalues of a scatter matrix 
○ (Scatter Diagonality, only with base result: F-norm of 

off-diagonal elements of W * M * W​T​) 
● Color 

○ The length of a lag is always encoded in the saturation: 
More saturation = shorter lag 

● Interaction 
○ Brush on axes to filter 
○ Radio buttons to change calendar unit, this filters all lags to 

those who fit the calendar unit 
■ Multivariate ACF plot 

● Purpose: Analyze temporal correlation of sources at this lag 
● Same as univariate ACF, but with more variables 
● A box is one lag, the autocorrelation of every source at this lag is 

encoded in a line inside the box 
● Interaction 

○ Hover highlights a lag in other views and makes detail 
table appear to read values 

○ Radio buttons to change order of lines between 
alphabetical source name or autocorrelation value 

○ Clicking a lag adds it to the selection 
■ Single source time series + scatterplot 

● Purpose: Analyze temporal correlation of a single source 
● One source can be investigated in more detail 
● This source will be shown in a line chart 
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● The highlighted lag is encoded in a horizontal line in the line chart 
● A scatterplot shows correlation pattern at this lag for this source 
● Interaction 

○ Selectbox to change source 
○ Line chart supports other interactions, but not Y resolution 

change 
■ Direct lag input 

● If you know exactly what you want and like to skip the exploratory 
interaction, toggle any lags with this textbox 

● Interaction 
○ Unfortunately no enter submit as of time of writing, click 

button 
■ Tasks 

● Select monthly lags with top 50% of autocorrelation, what pattern 
is visible? [all short] 

● What lag fits 29 months best? [610] 
● How well does it fit the interval of 29 months? [91%] 
● What source has biggest autocorrelation at this lag? [X11] 
● How would you describe the dependency of X11 at that lag? 

[normal distribution] 
● Try a new parametrization 

 

301



Tasks 

Open Tasks 
Exrates, here it’s really open analysis with a time limit of maybe 30min. We’ll watch and ask 
them to talk aloud, sharing their insights with us. We help when they forget how to do 
something, and try to suggest analysis paths should they run out of ideas.  
 

● They can pick any lag to investigate up to 
● Possible suggestions to look for something 

○ Explain existing methods 
○ Special components (e.g. very stable/unstable) 
○ Differences between otherwise similar components 
○ Special methods (e.g. very easy/hard to replicate) 
○ Parameter influence on method outcome (weight + mainly short/long lag sets) 

■ Take a method, think what differences they’d expect when changing the 
parameters, then try 

○ What’s a good setting for lag granularity that makes sense? 
● Possible questions near the end that may still incur analysis 

○ If we were in a dimension reduction context, which method would you select, and 
which of its components would you say are signal/noise? 
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Design argumentation 
What’s that for? 

● Parameter space cannot be explored easily, which makes selecting parameters harder 
○ Relation to calendar not done at all, but considered useful 

■ Calculated best fit between lags and calendar granules 
○ Scatters are autocovariance matrices, their eigenvalues indicate correlation, 

scatters with large eigenvalues are expected to reveal better components, and 
ideally a scatter has one large and many small eigenvalues 

■ Calculated difference in eigenvalues 
○ While not perfect (because of linear combination assumption), autocorrelation of 

sources can inform lag selection too 
■ Calculated max autocorrelation per lag 

○ Analysts wanted to look more closely into the data 
■ Multivariate ACF, as that's what they look at with univariate data 
■ Scatterplot of one selected source, requested specifically to see 

correlation pattern 
● Analysts can't explore results of different parameterizations easily 

○ They can't easily find different/similar results/parameters 
■ MDS maps to plot similarity of runs according to result 

interestingness/shape, parameters 
● Analysts can find similar/different runs by comparing distance in 

map and verify projection by point size 
○ Where same/similar components differ in sorting is interesting 

■ Constrained clustering (only max. one component per run in a cluster) 
plus histogram of sort order with opacity-coding gives overview of sort 
position distribution and component similarity 

● Comparison of parameters tricky 
○ Lag set parameter space is large but exact comparison not useful 

■ Lags can be binned into window 
■ Visual comparison of lag sets because more detailed than Jaccard 

distance 
● BSS model assumptions need to be validated, which is currently not done 

○ Scatter diagonality: If BSS model holds well, all should be pretty diagonal, and 
more diagonal around where lags were picked 

■ Compare line chart of diagonality as function of lag, with marks for used 
lags 

○ Scatter eigenvalue diff not actually part of model, but can inform future 
parameterization and is interesting to see 

● Comparison of obtained components is tricky 
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○ Analysts don't quickly see which components to compare to another or which are 
interesting 

■ Components are always sorted by interestingness and grouped by result 
■ Slope graph indicates difference regardless of sort order 
■ Superimposition indicates difference when keeping sort order 
■ PAM Clustering reveals the k most central components in the result 

○ Components are defined only up to sign and order, ie. no inherent order, possibly 
flipped sign 

■ Use DOI approach to sort components by an interestingness function, 
used by analysts already 

■ Postprocessing of result looks for same-but-flipped component and 
normalizes those, so they don't appear flipped in the UI if they're similar 
enough 

○ Detailed comparison of two/n>1 time series is cumbersome with their current tool 
■ Interaction allows to zoom into interesting time range quickly and to 

switch between overview/detail on Y axis 
● Currently no process/structure when investigating parametrizations 

○ Keep track of which weight was already used, for lags not so important as there 
are so many, and too many of the same will result in ball structure in MDS 

○ Possibility to iteratively refine a method by using it as base for new 
parametrization, new measures can be calculated in this case (scatter 
diagonality) 

● Besides theoretical assumptions and insights from simulation studies (with other data) 
there's currently not a good way to see how change in parameters affect result for a 
given dataset 

○ With iterative refinement this can now be better investigated 
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TSBSS study 2 
 

Interview structure 

● Send email the day before 
○ Send consent form, Zoom invitation, cheat sheet with updates 

● Before 
○ Set up documents and note-taking 
○ Set up stopwatch or other dedicated time measuring device 
○ Restart servers to have clean slate again 

● Intro 
○ Small talk, thanks for taking time 
○ Are they comfortable & ready to start, remind that they can take a break any time 
○ Explain what will happen 

● Ask if they read and understood the consent form, and if they have questions 
● Hit record, make sure ​gallery view is on at all times ​(meeting host settings are the 

recorded settings) 
● They share their screen and ​close unrelated software 

○ Make sure they are allowed (Zoom security settings) 
● Introductory tour and tasks (target 20min) 

○ http://guidance.cvast.tuwien.ac.at/synth_dist/#/data-load 
○ Intro (recall functionality and explain updates) 
○ Tasks 

● Optional: Additional time to explore, click around 
● Analysis on real dataset (20 min) 

○ http://guidance.cvast.tuwien.ac.at/real_dist/#/ 
○ They can pick any lag to investigate up to 
○ Possible suggestions to look for something 

■ Explain existing methods 
■ Special components (e.g. very stable/unstable) 
■ Differences between otherwise similar components 
■ Special methods (e.g. very easy/hard to replicate) 
■ Parameter influence on method outcome (weight + mainly short/long lag 

sets) 
● Take a method, think what differences they’d expect when 

changing the parameters, then try 
■ What’s a good setting for lag bin size that makes sense? 

○ Possible questions near the end that may still incur analysis 
■ If we were in a dimension reduction context, which method would you 

select, and which of its components would you say are signal/noise? 
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● Post study questions (10 mins) 
○ Post Study Questions 

 

Intro (recall functionality and explain updates) 
● Data Load 

○ Recall this shows input time series 
○ Mention added global controls 

● Explore 
○ Mention every section can be collapsed 
○ Note tooltips 
○ Explain Table & change in highlighting/ordering 
○ Projection changes: Grid, coordinate labels, correlation instead of ED, MD 

instead of Jaccard  
○ Component overview: Cluster medoid has bold font, correlation instead of ED 
○ Parameter comparison: More fine b, explain how lag set vis is now like a 

histogram 
○ BSS Model comparison: Superimpose+zoom, histogram instead of triangles, 

additional scatters (4th cross cumulants, supposed to help with k2 lags) 
○ Matrix comparison: Labels, scaling, see components/inputs 
○ Component comparison: Removed clustering, change component sign, tooltips, 

more classes for correlation 
● Parameter Input 

○ More fine b 
○ Lag selection: Removed calendar fit, changed default in MACF 

 

Tasks 
● Table 

○ Download​ components of a ​converging​ method that placed more ​weight​ on k1 
than on k2 

○ How do lags differ between converged and not-converged methods? 
● Projections 

○ Measured in correlation difference, are 1st components more or less similar than 
2nd components (any DOI) 

■ Solution: check the number below the grid (tick size), or alternatively find 
most distant points and compare their coordinates in both projections 

● Component overview 
○ Find stable/unstable components 

● Parameter comparison 
○ Set bin size to 100, which k1 bin has most lags overall and for one method? 
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● BSS Model comparison 
○ Zoom to range lag 1–500 and reset 
○ Superimpose the graphs 
○ Switch between scatters, if applicable 
○ Which method has the more diagonal k1 scatters 

● Matrix comparison 
○ Scale to unit variance 
○ Select/deselect inputs/components 
○ Find most important/interesting input, if applicable 

● Component comparison 
○ Select 3 converging methods ABC, then compare slope graph of AC 

■ Solution: reorder 
○ Change sign of a component 
○ Read correlation from tooltip 

 

Post Study Questions (same) 
● What do you think of the prototype? 

○ Looking for: Nothing, free form 
● Did you encounter tasks that were easy to perform? Which? 
● Did you encounter tasks that were not as easy to perform? Which, why and how could 

that be improved? 
● Did you encounter tasks that were not possible at all? Why are they useful, what 

questions would they answer? 
● How else could the prototype be improved? 
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Post-study feedback 
Thank you for participating in the user study regarding visual analytics for temporal Blind 
Source Separation. From past user studies we know that people sometimes get ideas 
only after the interview finished, when they had enough time to process their experience. 
Please feel free to reach out to us if you feel that we didn't discuss a particular idea about 
future improvements well enough, or at all. Find our interview guide for after the open 
analysis in the following.


• How would you describe the experience of using our prototype?


• How does the prototype compare to your current tools with regard to the tasks it was 
designed for, ie. selecting parameters and exploring components?


• What tasks were easy to carry out?


• What tasks were not so easy to do, and why was that?


• What tasks were not supported at all, and why would they be useful?


• What kind of data did you miss in the prototype, what did it not show but should?


• Do you have contacts to BSS "practitioners" in the sense that they're not statistics 
researchers, but actively do / want to use BSS? Would you be comfortable to connect 
us?


• If you don't have such contacts or are not comfortable sharing, do you have a 
suggestion how we could find such domain experts?
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Online Material

All supplemental material to P3 may also be found on the open access web page of
the article: https://doi.org/10.1016/j.visinf.2022.10.002 (accessed 15th May, 2024).
Supplemental material not reproduced in this thesis:

• Synthetic Dataset: https://ars.els-cdn.com/content/image/1-s2.0-S2468502X22001103-
mmc1.csv (accessed 15th May, 2024)

• Financial Dataset: https://ars.els-cdn.com/content/image/1-s2.0-S2468502X22001103-
mmc2.csv (accessed 15th May, 2024)

• Medical Dataset: https://ars.els-cdn.com/content/image/1-s2.0-S2468502X22001103-
mmc3.csv (accessed 15th May, 2024)

• Video Demo: https://ars.els-cdn.com/content/image/1-s2.0-S2468502X22001103-
mmc5.mp4 (accessed 15th May, 2024)
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who component statement score S mean std dev
VE1 insight 1 6

insight

1 6.40 0.55
VE1 insight 2 7 2 7.00 0.00
VE1 insight 3 5 3 5.40 2.07
VE1 insight 4 6 4 6.40 0.55
VE1 insight 5 6 5 6.40 0.55
VE1 insight 6 7 6 6.80 0.45
VE1 insight 7 5 7 6.60 0.89
VE1 insight 8 6 8 5.80 0.84
VE1 time 9 6

time

9 6.80 0.45
VE1 time 10 6 10 6.20 0.45
VE1 time 11 7 11 6.80 0.45
VE1 time 12 5 12 6.00 1.00
VE1 time 13 7 13 6.80 0.45
VE1 essence 14 6

essence

14 6.40 0.55
VE1 essence 15 6 15 6.40 0.55
VE1 essence 16 5 16 5.80 1.10
VE1 essence 17 6 17 5.60 1.14
VE1 confidence 18 6

confidence

18 6.60 0.55
VE1 confidence 19 6 19 6.20 0.45
VE1 confidence 20 NA 20 NA NA
VE1 confidence 21 4 21 4.33 2.61
VE2 insight 1 7
VE2 insight 2 7
VE2 insight 3 6 insight * 6.35 0.98
VE2 insight 4 6 time * 6.52 0.65
VE2 insight 5 7 essence * 6.05 0.89
VE2 insight 6 7 confidence * 6.00 2.98
VE2 insight 7 7
VE2 insight 8 6
VE2 time 9 7
VE2 time 10 6
VE2 time 11 7
VE2 time 12 7
VE2 time 13 7
VE2 essence 14 6
VE2 essence 15 7
VE2 essence 16 7
VE2 essence 17 6
VE2 confidence 18 7
VE2 confidence 19 7
VE2 confidence 20 NA
VE2 confidence 21 NA
VE3 insight 1 6
VE3 insight 2 7
VE3 insight 3 7
VE3 insight 4 6
VE3 insight 5 7
VE3 insight 6 7
VE3 insight 7 7
VE3 insight 8 7
VE3 time 9 7
VE3 time 10 7
VE3 time 11 7
VE3 time 12 7
VE3 time 13 7
VE3 essence 14 6
VE3 essence 15 6
VE3 essence 16 5
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VE3 essence 17 5
VE3 confidence 18 6
VE3 confidence 19 6
VE3 confidence 20 NA
VE3 confidence 21 NA
VE4 insight 1 6
VE4 insight 2 7
VE4 insight 3 2
VE4 insight 4 7
VE4 insight 5 6
VE4 insight 6 6
VE4 insight 7 7
VE4 insight 8 5
VE4 time 9 7
VE4 time 10 6
VE4 time 11 7
VE4 time 12 6
VE4 time 13 6
VE4 essence 14 7
VE4 essence 15 6
VE4 essence 16 5
VE4 essence 17 4
VE4 confidence 18 7
VE4 confidence 19 6
VE4 confidence 20 NA
VE4 confidence 21 3
VE5 insight 1 7
VE5 insight 2 7
VE5 insight 3 7
VE5 insight 4 7
VE5 insight 5 6
VE5 insight 6 7
VE5 insight 7 7
VE5 insight 8 5
VE5 time 9 7
VE5 time 10 6
VE5 time 11 6
VE5 time 12 5
VE5 time 13 7
VE5 essence 14 7
VE5 essence 15 7
VE5 essence 16 7
VE5 essence 17 7
VE5 confidence 18 7
VE5 confidence 19 6
VE5 confidence 20 7
VE5 confidence 21 6
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Online Material

All supplemental material to P4 may also be found on the open access web page of the
article: https://doi.org/10.1111/cgf.14530 (accessed 15th May, 2024). Supplemental
material not reproduced in this thesis:

• Video Demo: https://onlinelibrary.wiley.com/action/downloadSupplement?
doi=10.1111%2Fcgf.14530&file=cgf14530-sup-0001-S2.mp4 (accessed 15th May,
2024)

312

https://doi.org/10.1111/cgf.14530
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fcgf.14530&file=cgf14530-sup-0001-S2.mp4
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fcgf.14530&file=cgf14530-sup-0001-S2.mp4


1

ICET Question Score Question Score_mean Score_stdev ICET Score_mean Score_stdev
1 1 7 1 6.40 0.89 1 6.26 1.06
1 2 7 2 5.80 1.79 2 6.08 0.91
1 3 7 3 6.60 0.55 3 5.32 1.45
1 4 7 4 6.25 0.50 4 5.11 2.03
1 5 7 5 5.80 1.64
1 6 7 6 6.60 0.89
1 7 5 7 6.40 0.89 1-4 5.83 1.50
1 8 7 8 6.25 0.96
2 9 7 9 5.80 1.30
2 10 6 10 6.00 1.00
2 11 7 11 6.40 0.89
2 12 6 12 6.20 0.84
2 13 7 13 6.00 0.71
3 14 5 14 4.80 1.10
3 15 7 15 6.20 0.84
3 16 7 16 5.00 1.83
3 17 7 17 5.20 1.92
4 18 7 18 6.60 0.55
4 19 7 19 6.50 0.58
4 20 4 20 4.25 1.71
4 21 1 21 3.20 2.17
1 1 7

1 2 7

1 3 7 Legend
1 4 NA Col. Meaning
1 5 6 ICET ICE-T component. 1=insight, 2=time, 3=essence, 4=confidence
1 6 7 Question question id, in same order as in visvalue survey pdf visvalue.github.io
1 7 6 Score participant score
1 8 7 Score_mean mean of score without NA
2 9 5 Score_stdev standard deviation of score without NA
2 10 7

2 11 6

2 12 5

2 13 6

3 14 3

3 15 6

3 16 6

3 17 2

4 18 6

4 19 6

4 20 2

4 21 6

1 1 6

1 2 5

1 3 7

1 4 6

1 5 3

1 6 7

1 7 7

1 8 5

2 9 6

2 10 5

2 11 5

2 12 6
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2

ICET Question Score Question Score_mean Score_stdev ICET Score_mean Score_stdev
2 13 6

3 14 6

3 15 5

3 16 4

3 17 6

4 18 7

4 19 6

4 20 6

4 21 5

1 1 5

1 2 3

1 3 6

1 4 6

1 5 6

1 6 5

1 7 7

1 8 NA

2 9 4

2 10 5

2 11 7

2 12 7

2 13 5

3 14 5

3 15 6

3 16 3

3 17 5

4 18 6

4 19 NA

4 20 5

4 21 2

1 1 7
1 2 7
1 3 6
1 4 6
1 5 7
1 6 7
1 7 7
1 8 6
2 9 7
2 10 7
2 11 7
2 12 7
2 13 6
3 14 5
3 15 7
3 16 NA
3 17 6
4 18 7
4 19 7
4 20 NA
4 21 2
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Online Material

All supplemental material for P5 may also be found on the open access web page of
the article: https://doi.org/10.1109/TVCG.2023.3327203 (accessed 15th May, 2024).
Supplemental material not reproduced in this thesis:

• Video Demo: https://doi.org/10.1109/TVCG.2023.3327203/mm1 (accessed 15th

May, 2024).
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